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Abstract

The solution for a circular inclusion with a prescribed anti-plane eigenstrain is derived. It is shown that the com-
ponents of the Eshelby tensor within the inclusion, corresponding to a uniform eigenstrain, can be either uniform or
non-uniform, depending on the imposed interface conditions. The stress amplification factors due to circular void or
rigid inclusion in an infinite medium under remote anti-plane shear stress are calculated. The failure of the couple stress
elasticity to reproduce the classical elasticity solution in the limit of vanishingly small characteristic length is indicated
for a particular type of boundary conditions. The solution for a circular inhomogeneity in an infinitely extended matrix
subjected to remote shear stress is then derived. The effects of the imposed interface conditions, the shear stress and
couple stress discontinuities, and the relationship between the inhomogeneity and its equivalent eigenstrain inclusion
problem are discussed.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

As discussed in the preceding paper (Lubarda, 2003a), the motivation to extend the classical to couple
stress and micropolar theory of deformable bodies was to enable the prediction of the size effect experi-
mentally observed in problems with a geometric length scale comparable to material’s microstructural
length. For example, the apparent strength of some materials with stress concentrators is higher for smaller
grain size. The bending and torsional strengths are also higher for very thin beams and wires. The papers by
Mindlin (1963), Kaloni and Ariman (1967), Cowin (1970a), Reddy and Venkatasubramanian (1978),
Majumdar (1982), Kishida et al. (1990), Anthoine (2000) and Chen and Wang (2001, 2002) offer illustrative
examples. The classical theory was also in disagreement with experiments for high-frequency ultra-short
wave propagation problems, if the wavelength becomes comparable to the material’s microstructural length
(Mindlin, 1963; Brulin and Hsieh, 1982; Eringen, 1999). In the presence of couple stresses, shear waves
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propagate dispersively (with a frequency dependent wave speed). Couple stresses are also expected to affect
the singular nature of the crack tip fields (Muki and Sternberg, 1965). An extensive list of references to
micropolar and couple stress elasticity is available in review articles by Dhaliwal and Singh (1987) and
Jasiuk and Ostoja-Starzewski (1995). The research in couple stress and related non-local and strain-
gradient theories of elastic and inelastic material response has recently intensified, due to an increasing
interest to describe the deformation mechanisms and manufacturing of micro- and nanostructured materials
and devices, as well as inelastic localization and instability phenomena (Smyshlyaev and Fleck, 1996; Fleck
and Hutchinson, 1997; De Borst and Van der Giessen, 1998; Valiev et al., 2000). An analysis of the nu-
cleation and propagation of thermoelastic phase transformations within the couple stress theory has been
recently presented by Pettinger and Abeyaratne (2000), while Yavari et al. (2002) studied the effects of the
fracture surface fractality on the order of stress and couple stress singularities in micropolar elastic solids.

The objective of this paper is an analysis of the anti-plane strain problems of circular inclusions and
inhomogeneities within the framework of couple stress elasticity. There has been a significant amount of
research already devoted to inclusions and related problems in couple stress and micropolar elasticity.
Mindlin and Tiersten (1962) and Mindlin (1963) evaluated the influence of couple stress on stress con-
centration around the spherical and circular voids. The corresponding problem within the framework of
micropolar elasticity was addressed by Kaloni and Ariman (1967), who obtained significantly smaller stress
concentration factors by removing the rotation constraint of the couple stress theory. Some of the con-
clusions were critically reexamined by Cowin (1970a) (see also Neuber (1966)). The effect of couple stress on
stress concentration around an elliptical hole was studied by Majumdar (1982). The plane-strain calcula-
tions of stress magnification around a rigid circular inclusion were performed by Banks and Sokolowski
(1968), and around a circular inhomogeneity by Hartranft and Sih (1965), Weitsman (1965) and Gupta
(1976). A spherical inhomogeneity was considered by Wang (1970). Hsieh (1982) presented a general
analysis of non-local micropolar volume defects. Cheng and He (1995, 1997) derived the components of the
non-uniform Eshelby tensor for spherical and circular inclusions in micropolar elasticity, associated with
prescribed uniform eigenstrain and eigencurvature tensors.

In this paper, we apply the couple stress theory to anti-plane strain inclusion and inhomogeneity
problems. The governing equations of three-dimensional couple stress elasticity are summarized in Section
2, and then specialized to anti-plane strain conditions in Section 3. The equations are cast with respect to
both Cartesian and polar coordinates. The anti-plane shearing of a circular annulus bonded to a rigid
cylinder is presented in Section 4. The problem of a circular inclusion with uniform eigenstrain is studied in
Section 5. It is shown that the components of the Eshelby tensor in the inclusion can be either uniform or
non-uniform, depending on the type of interface condition prescribed at the boundary of the inclusion. The
effects of the couple stress moduli on the values of the Eshelby tensor components are determined in each
case. The solution for a circular inclusion with a particular type of the polynomial eigenstrain is also given.
The stress magnification factors due to the void in an infinite matrix under remote anti-plane shear stress is
derived in Section 6, and due to rigid circular inclusion in Section 7. Three types of the boundary conditions
at the interface between the rigid inclusion and the surrounding matrix are considered. It is shown that the
solution obtained by requiring both the zero displacement and zero displacement slope at the interface can
only be achieved within the framework of couple stress elasticity. This solution does not reduce to proper
classical elasticity solution in the limit of vanishingly small characteristic length, because the displacement
slope at the bonded interface does not vanish in classical elasticity. The results presented in Section 8
generalize the results from previous two sections. A circular inhomogeneity is embedded in an infinitely
extended matrix loaded by a remote anti-plane shear stress. Four types of the interface conditions are
introduced, with a detailed calculation given for the interface that cannot transmit a particular component
of the couple stress. The effects of different material properties on the stress amplification are examined. The
shear stress and couple stress discontinuities, and the relationship between the inhomogeneity and its
equivalent eigenstrain inclusion problem are then discussed. The concluding remarks are given in Section 9.
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2. Governing equations of couple stress elasticity

The rotation vector in couple stress theory is not independent of the displacement vector u;, but subject
to the constraint
P; = gk ()
as in classical continuum mechanics. The skew-symmetric alternating tensor is e;, and w;; are the rect-
angular components of the infinitesimal rotation tensor. The surface forces are in equilibrium with the non-
symmetric Cauchy stress ¢;, and the surface couples are in equilibrium with the non-symmetric couple stress
my;, such that 7; = n;t;, and M; = n;m;;, where n; are the components of the unit vector orthogonal to the
surface element under consideration. In the absence of body forces and body couples, the differential
equations of equilibrium are

tjlj = 07 mj,J =+ e[jktjk = 0 (2)
By decomposing the stress tensor into its symmetric and antisymmetric part (f; = g;; + 1;;), from the

moment equilibrium equation it readily follows that the antisymmetric part can be determined from the
gradient of the couple stress tensor as

Ty = —3€iMik- (3)

If the gradient of the couple stress vanishes at some point, the stress tensor is symmetric at that point. Note
that the normal stress in the plane orthogonal to the direction n is ¢, = ¢, = o;;m;n;, because t;mn; = 0 in
view of the symmetry of n;n;. Thus, the principal stresses of the symmetric tensor o;; are also the principal
stresses of the non-symmetric tensor #;, although there are shear stresses in the principal planes of #; due to
shear stresses 7;; (Lubarda, submitted for publication).

The non-symmetric curvature tensor is the rotation gradient x;; = ¢;,. The compatibility equations for
the curvature and strain tensors are k;; = —e;y€x. Since ¢; is symmetric and e;; is skew-symmetric, the
curvature tensor in the couple stress theory is a deviatoric tensor, ky, = 0. In addition, there is an identity
Kijx = Ki;i» Which defines the compatibility equations for curvature components. The compatibility equa-
tions for strain components are the usual Saint—Venant’s compatibility equations.

Assuming that the elastic strain energy is a function of the strain and curvature tensors, W = W (e, k;;),
the constitutive relations of couple stress elasticity are

ow ow

g, ij
In the case of material linearity, the strain energy is a quadratic function of the strain and curvature
components

W= %Cijkleijekl + %Kijleinkl- (5)
The fourth-order tensors of elastic moduli are C;; and K;j,. Since the curvature tensor is not symmetric,

only reciprocal symmetry holds for the couple stress moduli K;j; = Kj;;. The moduli Cyy, are fully sym-

metric. The stresses associated with Eq. (5) are
0ij = Cijki€rr, My = Rk Ky - (6)

The antisymmetric part of stress (t;;) is indeterminate by the constitutive analysis, but is specified in terms
of the couple stress gradient by Eq. (3). In the case of isotropic material, we have
Cijir = (0401 + 0405) + 4001, Ky = 4004051 + 40410, (7)

where p, 4, o, and f§ are the Lamé-type constants of isotropic couple stress elasticity. The stress tensors are
in this case
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O'l:]* = 2/.!61:/' + iekké,ﬂj, ml:,- = 40”(?,‘]‘ + 4ﬁKﬂ (8)

A spherical part of the couple stress m;; does not appear in any of the basic field equations of couple stress
theory, and without loss of physical generality it may be assumed to vanish (Koiter, 1964). Determination
of the couple stress moduli and characteristic lengths for different materials was studied, among others, by
Gauthier and Jahsman (1975), Yang and Lakes (1982), Lakes (1982, 1995), and Bouyge et al. (2001).
Additional references can be found in Eringen (1999).

At any point of a smooth boundary we can specify three reduced stress tractions

Ti = njt; — seyun;(npmpgng) ;. 9)
and two tangential couple stress tractions (e.g., Mindlin and Tiersten, 1962; Koiter, 1964)

M; = nymj; — (nympn)n;. (10)
The conservation integrals of couple stress and micropolar elasticity were studied by Lubarda and Mar-
kenscoff (1999a,b, 2000, 2003).

2.1. Displacement equations of equilibrium

The antisymmetric part of the stress tensor can be expressed as
Tl'j = —ZOC(}JUJ{/{ = —2O(VZCO,'/‘, (11)

which is independent of 8. The Laplacian operator is V2 = 02 /0x;0x;. Consequently, by adding (8) and (11)
the total stress tensor is

t,'j = 2/,[6,'] + )uekké,'j — 2OCV2(,U[j. (12)

Thus, the total (asymmetric) stress depends on both strain (e;) and rotation (w;), i.e., symmetric and
asymmetric parts of the displacement gradient (the couple stress elasticity also being referred to as
asymmetric elasticity; e.g., Grioli, 1960; Nowacki, 1986). Incorporating this into the force equilibrium
equation (2), we obtain the equilibrium equations in terms of displacement components

1 ©
2 N S 2
Vu; qu,+1_2VGXi(V u) =0, (13)
where v is the Poisson coefficient, and
P==. (14)
Three components of displacement and only two tangential components of rotation may be specified on the
boundary.

3. Governing equations for anti-plane strain

For the anti-plane strain problems, the displacements are

uy=uy =0, wuz=w(x,x). (15)
The non-vanishing strain, rotation, and curvature components are
1 ow 1 ow
€13 = €31 = €23 = €32 (16)

20x T 20,
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1 ow 1 ow
PL=n=350 P=On=—350, (17)
B 1w 1@ 1w (18)
= K22_28x18x2’ 2= 2 0x3’ ) o3’
It readily follows that
10 1 0
2 2 2 2
= — -2 1
Vs 261(v ), Vi 2ax2(v w), (19)
so that from Eq. (11)
T3 = —T)3 = oci(vzw) T = —1Tp3 = ai(vzw) (20)
e ) TR =TT = e .
Consequently, from Eq. (12),
_ 0 2v72 _ 0 2v72
hs =1y, (w—I"Vw), t31—,uax] (w+ IFVw), (21)
by = ,ui(w — PV*W), ty = p—(w+ PVw). (22)
aX2 ’ axZ
The couple stresses are related to the curvature components by
*w
=4 =2 — 2
my = 4(o+ By (“‘+-ﬁ)axlax27 (23)
At Pen = 2t ) — (24)
my = 2= o Ox mip,
*w w
mip; = 40£K12 —+ 4ﬂK21 = —Zaa—x% =+ Zﬁw, (25)
o*w o*w
— 2

my = 4oy + 4ﬂK12 = 20(@ —
2
(27)

It is noted that

miyy —my = 2(f — ) V:w.
Since displacement field is isochoric (V - u = 0), the displacement equations of equilibrium (13) reduce to a
(28)

single equation

Viw — PV = 0.
The general solution can be expressed as
w=w’ 4w, (29)
where w’ and w* are the solutions of the partial differential equations
(30)
(31)

V2w =0,

w'— PV = 0.
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In view of Eqgs. (29)-(31), the following identities hold
1 *
Viw = v (32)
and
w—PViw=w", w+ PViw=w"4 2w, (33)
which can be conveniently used to simplify the stress expressions (21) and (22). For the description of the

governing equations for anti-plane strain in more general micropolar elasticity, see Nowacki (1970) and
Eringen (1999).

3.1. Expressions in polar coordinates

When expressed in terms of polar coordinates, the general solutions of Egs. (30) and (31), obtained by
separation of variables, are

oo

w = (4o + ByInr)(Cy + 0) + Y (4,7 + B,r")(C, cosnf) + sinnd), (34)
n=1
w = [ (%) + Bika (7)) (C+ 0) + i [4:,(%) + B (5)] (0510 + sin ). (35)

The functions 7,(p) and K,(p) (with p = r/I) in Eq. (35) are the modified Bessel functions of the first and
second kind (of the order n); Watson (1995).

The non-zero strain, rotation and curvature components in polar coordinates are

1 ow 1 ow
693263925@, 6r3:€3r:§§v (36)
1 ow 1 ow
(pr:w93:5%7 <P0:w3r:_§§v (37)
and
0, 10 (1dw _Opy_ 10w (38)
T o 2ar\ro0) " or T 20
_10p, @, 1 w1 0w
LR T T2 e )
=% T T 2a\rae) T .
Note that

— _ 12
Ky — Kgp = K12 — K21 = _EV w. (41)

The corresponding couple stress components are (Fig. 1)

0 (10ow
my. = —Mpg —2(0(4—5)5(; @), (42)
aZW 2 azw 2
Mg = =200+ ) g+ 26VPw,  my = ~2(0+ f) oy + 207w, (43)

or or?
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my,
«<——

(a) (b)

Fig. 1. (a) A material element with sides parallel to coordinates directions x; and x, under conditions of anti-plane strain; and (b) the
corresponding element with sides parallel to polar directions » and 0.

The shear stresses are

R 22 10 22
t,3—,ua(w—le), t93—,u;@(w—le), (44)
by = ui (w4 PV*W), ty = ,ul o (w+ PVw) (45)
o T %0 '
In view of Eq. (33), the stress components 3 and #yp3 (or ¢;3 and t,3) do not depend explicitly on w*, i.e.,
on? 1 ow?
tr3_,uﬁa toz—,u;@, (46)
ow* 1 ow*
ty =t + 21 5 0 Be=tnt 2#; 0 (47)

The couple stresses, however, affect the values of #,3 and #y; through the imposed boundary conditions. For
example, along an unstressed circular boundary » = R around the origin, the reduced tractions must vanish,

_ 1 om, B
ty =tz — ﬁ Y 07 m,g = 0. (48)
Also note that
Pw 2B Pw 20
mo = =20+ ) g+ W my = =2a+ oz + W (49)

4. Anti-plane shear of circular annulus

A simple but illustrative problem of couple stress elasticity is the anti-plane shearing of a circular an-
0

nulus. Suppose that the inner surface » = R is fixed, while the constant shearing stress ¢, is applied on the
outer surface r = Ry (Fig. 2). The corresponding displacement field is independent of 6 and given by

w(r):Ro[Aln%+B+CIO(§) +DK0(§)] (50)
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0
G 3 = const.

0 _
myey=0

R,
Fig. 2. A circular annulus of inner radius R and outer radius R, under shear stress ¢%; over the outer surface. The inner surface of the
cylinder is fixed (w = 0).
The integration constants are specified from the boundary conditions
0
W(R) = 0, t,g(Ro) = 0,3, m,(;(Ro) =0. (51)

The fourth boundary condition is obtained by specifying an additional information about the bonded
interface, such as the magnitude of slope dw/dr or the couple stress m,y at » = R. We will proceed by
adopting the first choice, i.e., by assuming that the rotation

1 /dw
wm=-3(5) =o (52)
0 2\ dr /,_, v
is known at the interface. It readily follows from Egs. (46) to (49) that
=% g _cn(®) (R (53)
_ﬂ7 - 0 / 0 i )
and
0
K (8) —pR] 22 —2pp0
C:L[I(I)R R]y = qo, (54)
Ry bI(%)+aKi (%)
0
L(%) +a%]™2 424
D_L[I(I)R R]y - (p9’ (55)
Ry bh(%)+aKi(§)
where
o Ro, (Ro Ry o Ry Ry R
- =Ll =) -5= b= —K| =) +K(=]. 56
(7)) e e () e (B) 59
Consequently,
ta(r) ==L, (57)
_ 0 r "\ _ r
() = o+ 207 |€n(5) - k(7)1 (58)
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B Ry 0%, Ry p r [ /r Ry p r I r
mralr) = 2(“+ﬁ>{r—27‘cz—z () ()| 0% k(D) k(D))
(60)

If the bonded interface cannot support the couple stress m,y, we set the right-hand side of Eq. (59) equal to
zero and calculate the corresponding rotation @,.

5. Circular inclusion with uniform eigenstrain

Suppose that a circular cylinder (inclusion) of radius R is taken out of an infinitely extended medium
(matrix) and given a uniform stress-free transformation (eigenstrain) of anti-plane shear type. The corres-
ponding displacement is a linear function of the rectangular coordinates, such that

wi = 2r(e}; cos 0 + €5, sin 0), (61)
where €}, and €3, are the constant eigenstrain components. When the cylinder is inserted back into the

matrix, with their interface perfectly bonded, the displacement fields inside and outside the inclusion are,
respectively,

Win = Wi + wi, = r(4; cos 0 + By sin 0) + R, (;) (Cycos 0+ Dy sin0), (62)
2 r
Wout = W2, + Wi, = — (42 cos 0 + By sin 0) + RK, (7) (Cycos 0 + D, sin 0). (63)
r
The functions w) and w?, satisfy the Laplacian equation, while w;, and w;, satisfy the equation

I>’V?w* = w*. The boundary conditions at the bonded interface are

Win = Wou, 08 =19, m =m%" atr=R. (64)
The reduced tractions at the interface are defined by
o am:]: Zout — out L an’l(r)rmL
2R°00° 7 7 2R 00

The conditions (64) are not sufficient to specify all constants appearing in Egs. (62) and (63). An additional
condition is needed, which can be selected in several ways. An appealing condition is obtained by requiring
that the shear stress #;, is continuous across the interface, i.e.,

M =£5" atr=R. (66)

Zin __ 4in
tr3 - tr3 -

(65)

In classical non-polar elasticity, this condition is automatically satisfied by the imposed interface condition
7 = 2, since the stress tensor in non-polar elasticity is a symmetric tensor. Another possibility to specify
the additional interface condition is to stipulate the relationship between the rotation components ¢, across
the interface. For example, in classical elasticity a posteriori calculations reveal that ¢ = —@o" at r = R.
While one may assume that the same relationship holds in couple stress elasticity, it is likely that this re-
lationship will be altered to some extent by the presence of the couple stress m,¢ at the interface. The precise
relationship is therefore not known in advance. Of course, if one assumes that the interface cannot transmit
the couple stress m,9 during the insertion of the inclusion into the matrix material, the additional interface
condition would be simply m,q = 0 at » = R. Actually, one may show that various possibilities can all be
deduced by the specification of the appropriate (corresponding) value of the couple stress m,y at the in-
terface. We shall proceed with further calculations by adopting the condition (66). The condition
m,9(R,0) = 0 will be considered within Section 8.1.
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To apply the boundary (interface) conditions (64) and (66), we first derive the general expressions for the
shear and couple stress components. It readily follows that

: 0
1y = 3, (W) — i) = u(d; — 2¢};) cos 0+ u(By — 2¢3;) sin 0, (67)
ou o, R? .
tr3‘:uﬁ‘:—uﬁ(Azcosf)JrstmH), (63)
ow;,
t3r*t13+21u 6
. R r ro(r . R r ro(r .
= 26,428 [1(5) <5 (5)) s fooso-t a2+ 22 [1(5) + ()] 21 fsine,
(69)
a *
t(})rul _t;)3ut+2 a’(’)'ut
R? R N ro (T R? R N o F__(F .
= “{ =2 (K (7) 7K2(7)}CZ}C"59“{7232 27 [K(7) 7K2(7)]D2}Sm9v
(70)
=2t o (L2 = oot ) B (1) (Cising - Drcost) ()
o ~0 ) = o —h(7)(Cis 1 cosb),
0 /10dw
out I out
=2 +ﬁ)6r(r 20 >
R| R r r .
:2(a+ﬁ)r—2 27A2+7K2(7)C2 s1n0—2(a+ﬁ)r 2— Bz+lK2(l>D2 cos 0, (72)
o Pwy, 28 a+p 1 r .
my = —2(a+ f) 32 +l—2 HZMR[ " Iz(l>11(1)](C10050+D151n0), (73)
ou aWOU Zﬂ *
miGt_ 2(0(—|—ﬁ) ar2t+l_2 out
o+ B RI? rN o+ p r
-2 R{2 r—3A2+[K1(7)+ k() |Capoost
o+ BRI N a+ Bl r .
—2/.LR{2 OC 732+|:K1<7)+ OC ;K2(7) D2 sin 0. (74)
The three interface conditions (64) now become
—Az +11C1 —K1C2 == 0, (75)

( ;‘B>A2 42 ;lﬁ (LC) + K, Cy) = 268, (76)
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R R
24, — at—ﬁ(ll C1 = KiC2) + 7 (1Cy + K C) =0,

and

B, — By +I,D; — KDy =0,

o+ p o+ p
B 142 B, —— L (LD, + K,D,) = 2¢°
1+(+ ,uRz)z uRl(21+ »D») €3,
R? R
2B, — # ﬂ(llDl — KiD2) + 7 (.Dy + KaDs) = 0.

In above equations, for brevity, the notation is used

pen(B), kk(5), o

The continuity condition (66) furthermore gives

R R
A1 +A2 +2(11 +712>C1 - 2<K1 —7K2>C2 = 26I3,

R R
Bl +Bz — 2(]1 +7]2>D1 - 2<K1 —7K2>D2 = 2653

The solution of the system of Eqs. (75)—(77) and (82) is

4
Ai=1{1—- )¢ A, =€
1 ( a)em 2= €35

2 lK] 2 111
== (3222 +2)e, C= 3-L_2)e
¢ ablo<3RK0+ )613’ ’ abK0<RIo )6”’

1

where

o R2 _11 K1

— 1222 p= ‘
“ + O(+ﬁ12’ ]0 KO

Similarly, the solution of the system of Egs. (78)—(81) and (83) is

4
Bi=(1—-= €, Br=¢,,
1 ( a)EB 2= €3

2 I K 2 [ 1
Di=—(3-2012)e, D= 3o 2)e,
LT bl <3R o >623’ 2 abK0< R )623

The coefficient 1 — 4/a, appearing in Eqs. (84) and (87), is

a+p P
4_2—3 OL ﬁ
_c_ £,
S Pt

(82)

(83)

(84)

(85)
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If //R — 0, the parameter @ — oo, while

n(p)a=n()on o k(j)ex(})os o 0

and 4, = 4> = €}, and B, = B, = €};, in agreement with the results from non-polar elasticity.

5.1. Components of non-uniform Eshelby’s tensor

The strain components within the inserted inclusion are

o 1 aWin
3= 2 Oor

=By ~2a(5)] e feoso 1 mB[u(5) - La(5)] 2.} sno o)

1 6win 1 R r . 1 R r
[+ 20 (5)c]smo-+ 3 [s 420 (7)o oo (92)

in

in -

372,20 2

Upon substitution of the expressions (84), (85), (87), and (88) for the constants 4, B, C, and D, we obtain
€3 =2S33€, e = 2Su0 €5, (93)

where S,3,;3 and Sy¢3 are the components of non-uniform Eshelby’s tensor (Eshelby, 1957). These are here
defined by

1 4 2 ! K, R r [ r
=A==+ —— (3= 2) (5 ) —=n(=)]| ¢, 4
Sran 4{ a+ablo<3RKo+ )1{0(1) r‘(1>H (94)

[, 4 2 [, 1K R /r
= 1-2+—=(3=242)=n(5)]. 95
Soats 4[ a+ab10< REK >r ‘(1)} (95)

It is noted that the material properties enter these expressions only through the ratios o/ and o/ u (or /). If
//R — 0, the strain field within the inclusion becomes uniform, with S,3,3 = Sp3e3 = 1/4 (independent of
material properties). A non-uniformity of the Eshelby tensor in the case of spherical and circular inclusions
in a micropolar elastic medium has been demonstrated by Cheng and He (1995, 1997). In their work the
microrotations are independent of the displacement field, and the results cannot be simply reduced to our
results of the constrained rotation and couple stress elasticity. Under what combination of material
parameters the solution of a micropolar elasticity problem reduces to the solution of the corresponding
couple stress elasticity problem was discussed by Mindlin (1963), Kaloni and Ariman (1967), Eringen
(1968), Cowin (1970a,b) and Lakes (1985). The antisymmetric part of the stress tensor in micropolar
elasticity (independent microrotation ¢,) is specified by the constitutive expression t; = 2f(®; — e @y),
where [ is the micropolar shear (rotational) modulus, while 7;; is indeterminate by the constitutive analysis
in couple stress elasticity, where w;; = e;¢, and @ — oo.

It should be observed, however, that the non-uniformity of strain within the inclusion is associated with
the imposed condition on the continuity of traction #,.(R, 0). If, instead of (66), we assume that the interface
cannot support the couple stress m,q, i.c.,

(R, 0) = m3" (R, 0) =0, (96)
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we obtain
1
A _ .
1 (Kl o+ ﬁ ] )6137 = €13 (97)
21
I]Cl = 0 K1C2 - 613, (98)
where

KO / o R
== — 2— _—
c K1+ R+oc+ﬁl (99)
The expressions for By, B,, D; and D, are obtained from Eqs. (97) and (98) by replacing €}, with €5,. The

corresponding displacements are
1 /Ky o R R 211 r
in=—| —+——=— |ren, out = ————K(—) e 100
s c(K1+oc—|—ﬁl>rE’3 Hout [r c K\ ]6'3 (100)

They depend on the material properties through the ratios o/f and «/p (or /). The strain components
within the inclusion are

: 1 KO o R ; 1 Ko 04 R

m __ - [ m __ - . 101

s=n(eraipt)s d=xuloragT)s (o1
where

€, =€13c080 + €,8in0, €, = —e€7;sin0 + €, cos 0. (102)

The components of, in this case uniform, Eshelby tensor are

1 (K o R
Sia3r3 = So303 = i (K(l)+oc+ﬁ7)' (103)

5.2. Circular inclusion with a polynomial eigenstrain

We extend here the analysis to the case of a circular cylindrical inclusion that has undergone a particular
type of the polynomial eigenstrain described by the displacement field

L] rn (] (] .

Wi = 2t (g7 cosnl + g5, sinn0), (104)
where g}, and g5, are the constants (for a more general polynomial eigenstrain in the case of classical
elasticity, see Mura, 1987). The inside and outside displacement fields after the cylinder is inserted back into
the matrix are, respectively,

J

R —— (4 cosn0 + By sinnf) + RI, (l)(Cl cosnf + D, sinnf), (105)

Win =

Rn+l

Wour = — = (45 cosnf + B, sinnl) + RK, (;) (Cy cosnl + D, sin nd). (106)

The boundary conditions at the bonded interface, specified by Egs. (64) and (66), then give
Ay — Ay +1,C; — K,C> = 0, (107)

1 o R 1R 1 a+B R,
(1+_—_>(A1+A2)_(A1 A2)+—7(n+1C1+Kn+1C2) o aﬁﬂgla,

2 outp P (108)
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o R? R
n(A1 —|—A2) - <n2 - m l—2>(A1 —Az) +7([,1+1C1 +Kn+1C2) == 0, (109)
2R .
Ay + 4, = 2(4, _A2)+Z7(In+lcl+Kn+lC2) =813 (110)

with similar expressions for the constants B and D.
The solution of the system of Eqs. (107)—(110) is

A1:§5{3n—aiﬁ [%I;—;+n2(n—1);—22]}, (111)

AQ:‘?;{3n—4—diﬁ[%f—j+n2(n—l);—1}7 (112)

clz—ffg%{w [n—&-Z—aiﬁnz(n—l);—Z}éK]n{"l}, (113)

C :i;g Knl,l {2— [n+2—aiﬁn2(n— 1);—22}11“5"1 } (114)
where

a — —aiﬁ[ili—n%n—l)li}, bzlﬁl—F%. (115)

The integration constants By, B>, Dy, and D, are obtained from Eqgs. (111) to (114) by replacing g}, with g3,.
When n =1, we recover the expressions (84)—(88) for the inclusion under uniform initial eigenstrain
8}y = 2¢}, and g3, = 2¢5,. Similar analysis can be performed if, instead of the continuity of traction #;,.(R, 0),
we require that the interface cannot transmit the couple stress m, (R, 0).

6. Circular void in an infinite medium

Consider a stress-free circular void of radius R in an infinite medium under remote shear stresses 675 and
055. The displacement field is w = w® 4+ w*, where

00 2 00 2
w’ = <&r+AR—>cos9+(%r+3R—>sin0, (116)
U r U r
r :
w* :RK1<?)(CCOSQ+DSIHQ). (117)

The constants 4, B, C, and D are determined from the boundary conditions of vanishing reduced stress
tractions along the surface of the hole » = R, which are
iy 1 om,.
3 — b3 R 60 -

The boundary conditions giving rise to uniform shear stresses 675 and ¢35 at » — oo are identically satisfied
by the selected form of the displacement function. The first condition (118) gives

0, my=0. (118)
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R R R
R R R
and the second
R? (R R
2(0+ B4 +l—2[(cx+ﬁ)K1<7> —ﬁK1<7>]C—0, (121)
R? R R
2(a+ﬁ)B+7[(a+ﬁ)K{’<7> ﬁK,<7)]D0. (122)
It readily follows that
a of a o3 2 0% 2 o5
=-— B=--= =—-— D=---= 123
b M ) b 'LL ) C b ‘[,l ? b M b ( )
with the parameters
2
a:a0+2K1, b:a0+4K17 7N :EK()—F i R (124)

— " K.
l s+ p 2!

The values of the modified Bessel functions at » = R are denoted by Kj and K. The resulting displacement
field is

aR* 2R ] %
where
075 = a73c0s 0 + 055 sin 0. (126)

In the limit as R// — oo, the ratio a/b — 1 and we recover the classical elasticity result
R2 00
w:(r—l——)%. (127)
r) ou

To evaluate the effect of the couple stresses on the stress concentration at the points on the surface of the
hole, consider the shear stress components #y; and 3y at » = R. It is found that

2c d
t93:FGS§, t39: <1+b>0';§, (128)
with ¢ = ay + 3K1, d= ap — 2K1 and
o)y = —075sin 0 + 655 cos 0. (129)

The stress magnification factor for the shear stress 7y; = 2{aj; due to couple stress effects is
o [ / K()
(320
_C_O(+ﬁ+R<R+K1)

‘=T +1 4l+K0 '
x+pf R\ R K

For example, for a small hole with the radius R = 3/ and with =0, this gives { = 0.936 (indicating a
decrease of the maximum stress due to couple stress effects). The stress concentration factors in the case of

(130)
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the void in an infinite plate under remote tension were calculated by Mindlin (1963). The effect of couple
stresses on stress concentration is less pronounced if the model of micropolar elasticity is used, where the
material rotation is independent of the displacement components (Kaloni and Ariman, 1967; Cowin, 1970a;
Eringen, 1999).

7. Rigid circular inclusion

In this section we consider a rigid circular inclusion of radius R within an infinitely extended medium
under remote loading ¢, defined in Eq. (126). We want to examine the stress magnification due to couple
stress effects. The displacement field is

s R x R .
wRf%%+A7+cx(%ﬂcm9+RF%%+B7+Dm(%]mw. (131)

The integration constants can be determined from the boundary conditions at the surface of the rigid in-
clusion

W(R, 0) = 07 m,O(R, 9) = m?{, = l((llg cos 0 — (2531 sin 0), (132)

where la;; = m5(R,0) and lay = my(R,0) are assumed to be given constants. While the first boundary
condition at the bonded interface in (132) is obvious, the second one needs an explanation. In general, we
do not know aj, and ap; in advance, but we shall be able to relate these parameters to specific types
of interface. For example, if the interface cannot transmit the couple stress m’), these parameters are
identically equal to zero. Other possibilities will be discussed in the sequel. In any case, it readily follows
that

A=-Kkc-2B p—_gp-"3 (133)
Il It
and
ko= L[2as v an] g L[200s o an] (134)
c|lR nu a+p2u c|R nu a+p2u
where
K() o R
_ K R 135
¢ Kl a+ﬁl ( )

The displacement field is

R* 11 rN R R o m 0%
=qr——+—-|=K(-)——||2l—= )5 1
v {r r+c[K1 l(l) r](l 21a+ﬁaf§>}u (136)

The corresponding stress and couple stress components in the matrix material readily follow from Egs. (46),
(47) and (49). For example, at » = R we have

1 /21 x m
(R — 2g% I eI r0 1
(R 0) =205+ ¢ (o - ). (137

1 Ko R\ [ 21 o m
RO)=20%——(14+2—— —o0y — 0. 1
15 (R, 0) = 265 C( + Kil)(Raﬂ a+ﬁ21> (138)
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The corresponding symmetric and antisymmetric parts are

1Ky R (2] o m
(R, 0) = 20% — ~ DO R (20 e Mo )
03( ) 01’3 CK] l (RGB OC"‘ﬁ 2] >

1 Ko R\ (2] . «  m
T’3(R’9)_E<1+1?17)(E°r3_a+ﬁ 21)'

The other two shear stress components are

120 . a om
163(R, 0) = —3p(R, 0) = _E(Eo%-‘v-ot-i-ﬁ 2l >,

where

ml, = —I(ay sin 0 + az cos 0).
The 0 component of the rotation at the surface of the bonded inclusion is

1
¢o(R,0) = =57 0(R,0).

7.1. Particular types of interface conditions

7.1.1. Type I: The bonded interface cannot transmit the couple stress mg
In this case we set m% = 0 in Eq. (136) to obtain

R 211 rN R\ o3
W—{F—T—I—?[EKl(?)—;]}?.

Accordingly, Eqgs. (137)—(141) give

Iy . 171 Ko -
t,.3(R,0)—2(1+§>0'r3, 13,(R,9)_2[1—2(—+2—>}or3,

R K
1Ko\ .. 2/1 Ko\ .
Gr3(R’6)2(1EE>6’3’ T'G(R’B)E(]_?Jr]?l)()—’ﬁ’

21
l‘(.)g(R,G) = 7[39(R,9) = 72 EO’S;

The rotation at the interface is

1Ko o%
RO =—(1--22)23
(PU( ’9) ( CK[) 'u

3843

(139)

(140)

(141)

(142)

(143)

(144)

(145)

(146)

(147)

(148)

The magnification factors due to couple stress effects are easily extracted from above expressions. For

example, if / = R/3 and = 0, the magnification factor for #,;(R, 6) is

/
=1+—=1.086.
¢ +cR 086

(149)

As expected, the couple stress effects enhance the stress concentration around the rigid inclusion. This
increase is more pronounced for higher values of f, and in the limit as f — a, { approaches the value of

1.141 (for R = 31).
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7.1.2. Type II: The rotation ¢, at the bonded interface as in classical elasticity

If it is assumed that the couple stress m,y does not affect the rotation ¢, ate the bonded surface of the
inclusion, so that the material rotation there (or the slope Ow/0r) is as predicted by the classical elasticity
calculations, we set

O-OC
Po(R,0) = — . (150)
u
From Egs. (139) and (143) it then follows that the corresponding couple stress at the interface is
Poat+p .
m’y = m,(R,0) = 4E 0 (151)
The displacement field becomes
R2 00
w= (r——>%. (152)
r)ou

It furthermore follows that antisymmetric parts of the shear stress vanish, while
ow R\ 1 dw R*\
R (1—|—r—2>ar3, 03 = Ho5p = (l—;)am. (153)

In this case, therefore, there is no magnification of stress due to couple stress effects, and the stress con-
centration factor for ag,5 is equal to 2 (as in classical elasticity). The corresponding couple stresses are
distributed according to

a+ B R

o+ B R
My = —mgg =4——— ——053, My =my =4 —
o «

e (154)
where the shear stress o3 is defined in Eq. (129) and ¢% in Eq. (126).

7.1.3. Type III: The rotation ¢, vanishes at the bonded interface
Since 2¢, = —0w/0r, this type of interface is characterized by the zero displacement slope

(%V)rR = 0. (155)

The condition (155) implies that both the shear strain ¢,; and the symmetric component of shear stress a,3
vanish at the interface. The couple stress m’, required to maintain the zero slope condition (155) is obtained
from Eq. (139) by setting 6,3(R, ) = 0, which gives

K
mdy = —4lfoor3. (156)

The displacement field is

R? K1 N R]) o%
_ SRR § Juis ) I G (R R I Q' B 157
W {r r+ IKO{KI l(l) r]}u ( )

Since the symmetric component of shear stress vanishes at the interface, the total shear stress there is

1 [ o K]
_ - Sl (T N P 1
1,5(R,0) = —13,(R, 0) 2[1+C(R+a+ﬁ1<o>}“f3 (158)
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The limiting process //r — 0 reveals that
mly =0, 1,4(R,0)=—13(R,0)=20%. (159)

This is an unacceptable solution in classical elasticity, where the stress tensor is necessarily symmetric. The
physical reason for the failure of the limiting process to recover the classical elasticity results is that the
rotation ¢, at the interface, as imposed by Eq. (155), does not vanish in classical elasticity but is equal to
—0% /u. Thus, the condition (155) at the interface between rigid inclusion and the surrounding matrix can
be achieved only within the framework of couple stress elasticity with a non-vanishing characteristic length
I. In this case it is also noted that gy3(R, 0) = 2635 and

1 /4l o
‘L'()3(R, 0) = —‘L'30(R, 0) = _2_c <E003 —i—mmg,) (160)
where
K .
mgr:4lzl)a(3§, o3 = —0°5sin 0 4 035 cos 0. (161)

In the limit as //R — 0, the couple stress m)). and the shear stress component 743(R, 6) both tend to zero.

In a different context, within the class of singular plane strain crack problems, the failure of the couple
stress elasticity solution to reduce to classical elasticity solution in the limiting process of the vanishing
characteristic length was discussed by Sternberg and Muki (1967). It should also be noted that an analo-
gous condition to (155) of vanishing rotation at the bonded interface was used in plane strain calculations
of stress magnification under uniaxial tension by Banks and Sokolowski (1968), although no discussion of
the relationship to classical elasticity solution was given in the limit of vanishingly small characteristic
length.

8. Circular inhomogeneity

We now consider a more general case of the circular inhomogeneity of radius R and material properties
i, & and B, surrounded by an infinite matrix with material properties u, « and /5, under remote shear loading
0% as in Eq. (126). The displacement functions are

Win = [Zr—&— (A?Rll (%)} cos 0 + [Er—i—ﬁRh (%)} sin 0, (162)
00 RZ 00 RZ

Wout = &r+A—+CRK1(Z> cos O + %r+B—+DRK1(f) sin 0, (163)
u r / u r /

where > = &/ji and 1> = o/u. The boundary conditions at the bonded interface are taken to be

Win(R7 0) = Wout(Ra 6); (164)
(R, 0) = (R, 0), (165)
m5(R, 0) = m3'(R,0) = m). (166)

The couple stress m% = [(aj; cos 0A - aZIAsin 0) is assumed to be known at the points of the interface. The
four equations for the constants 4, 4, C and C, resulting from the imposed boundary conditions, are
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Z—A+TIE‘—K1C:%, (167)
R +p P A+ Pl +p1
,uA+,u<1+2 aﬂﬁ)A+u“&ﬁﬁzc+ x ﬁEchzo-;{i, (168)
OAC+EIAAA o~ o~ la12

i _ - _ 1
R 2C -1, C R (169)
o+ B PP a+p 1 [ ap

7‘,1\,@), K‘,K‘,<§>, v=0,1,2. (171)

The solution of the system of Egs. (167)—(170) is

,u—ﬂ 0'(1)3 9 2 00 T~
A= (B ko), Ad=—"" (6% 4 uk,C) —1,C, 172
u+u<u 1) u+ﬂ(” HEC) — 1 172
~~ 1 1lap 12l p—joSs o ap
C=--22 KC=—-(2E_L%5, 2 173
: ¢ R 2 ! c(Ru+uu o+ 2u (173)
where
i+ B 1T K, 4l R
@:aﬁ:ﬁ—rz—h c:—o—l———uA-I- — (174)
@ R Ki Rpu+p a+pl

The constants fi’, B, D and D are defined by the same expressions, except that 475 is replaced by 053, and ap,
by —asy;. The results for the rigid inclusion and void are recovered in the limits (f, &, f — oo, I — 0) and
(u, o, p — 0, I — 0), respectively.

8.1. Different interface conditions
Four types of interface conditions may be considered regarding the specification of the couple stress m’.
The first type is based on the assumption that the interface cannot transmit this couple stress at all, i.e.,
my =0 (ar =ay =0). (175)

The second type of interface condition is obtained if it is required that the rotations ¢ (R, 6) and ¢{"'(R, 0)
are related to each other in the same manner as in classical elasticity. Since displacement fields in classical
elasticity are

00 _ARZ 00
Wi = 20— g = [ BRI (176)
i p+pr | ou

there follows

Own 0% O <l_u—ﬂR_2> 5 (177)

or u+p’ or
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Thus, at » = R we have

~ awin o awout
o T e

(178)

which is then required to also hold in couple stress elasticity.
The third type of interface condition is obtained by requiring that the rotations at the interface are
actually equal to each other, so that

Wi o OWour

or  or

at r = R. (179)

Naturally, the couple stress elasticity solution for this type of interface does not reduce to classical elasticity
in the limit of vanishing couple stress effects, because the relationship (178) and not (179) holds at the
interface in classical elasticity. The equal rotations at the interface between the circular inhomogeneity and
the surrounding matrix were also assumed in plane strain calculations of stress magnification under uni-
axial tension by Hartranft and Sih (1965) and Weitsman (1965), but without discussion of the relationship
to classical elasticity solution in the limit of vanishingly small characteristic length. The relationship
between the rotations in classical plain-strain elasticity can be calculated from the results obtained by
Lubarda and Markenscoff (1999a).

Finally, the fourth type of interface condition may be associated with the requirement for the continuity
of the shear stress #3,. across the interface, i.e.,

(R, 0) = (R, 0). (180)

In the subsequent calculations, we shall adopt the first type of interface condition, defined by the vanishing
couple stress along the interface and Eq. (175). (This type of interface condition is to some extent similar to
the so-called slipping interface of classical plane-strain elasticity which can transmit the normal stress ,,,

but not the shear stress ag,49). It readily follows that 1,C=1,D =0, and
A“_@(fﬁ+mc> B=t" “<“”+K@) (181)
pA o\ Bt
Zzé(afwmc), E:i(a;+uKlD), (182)
pA+ i pAt
KC=-b23 KD=-p7B, (183)
1 It
The parameter b is defined by
21 pu— i
A . (184)
cCRp+p
with ¢ as in Eq. (174). The displacement fields are accordingly
W = 2(1 — )75 (185)
u+p

L—pR R | 6%
out = 1 - - —K ()] 1
Wout = |7+ ( mu+u" z (J]/J (186)
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The corresponding shear stress components are

2 p-i R
’3_(1_b)’u—|—ﬂ0—r37 tr3t: 1_(1_b)’uTﬂr_2 0",3, (187)
in 2,[1 00 ou [ ﬂ_ﬂRz- 00
tesz(lfb)u-i-,u%% fhy = 1+(1*b)u+,&ﬁ O3 (188)

Clearly, there is a uniform stress and strain distribution and no couple stresses at all within the inhomo-
geneity, for the considered type of interface that is incapable to transmit the couple stress m,(R,0). A
discontinuity in shear stress #;. across the interface is

. R K
£2(R.0) — (R, 0) = (3 28 KO)aw (189)
The couple stresses in the outside material are
out _ out __ 'u_ﬂl _ szii 1 r oig
m, = =My = 4(a+ﬁ),u+ﬂr{(l b)rz oK, Ko(1>+rK1(1) L (190)
out __ u ,ul R_z_ 1 f o . l z O'_f;
mot = — 4o+ ) +W{(l e KO(1)+ +ﬁl+2 (1) -, (191)

The expression for mj" is as given by Eq. (191), except that the coefficient o/(a + ) multiplying the r//
term is replaced by f / (o + ). Thus, a discontinuity of the couple stress m§ " across the interface is

iR (R, 0) = (R,0) = 5 (8= ) B (192

8.2. Shear stress magnification factors

The shear stress components at the interface are obtained from Eqs. (187) and (188) by using » = R. This
gives

201 1
T=(1-b o M= 20+ b(u—f)|o%, 193
= =b) S, = [ bl ) (193)
. 20 1
Mm=(1-b—=03 ("= —2u—b(u—i)|oss. 194
= ( )H‘Fﬂa% 03 #+ﬂ[ﬂ (1 ﬂ)}“ea (194)

The classical elasticity results follow from Eqgs. (193) and (194) by setting b = 0. Thus, the stress magni-
fication factors due to couple stress effects are

ou b ou bu—p
o= —p, M= 2#M , 93‘:1_5“_#”, (195)

For the considered type of interface, there is no magnification of the shear stress if two materials have the
same shear modulus (u = j1). Actually, in this case the specification of the vanishing couple stress m,, at the
interface yields a classical elasticity solution, regardless of the couple stress moduli « and f, since from Egs.
(190) and (191) m*"* = —mg;' = 0 and m%" = m§"* = 0 everywhere in the matrix. This is also the case for the
matrix with the vanishing couple stress moduli « and f, since then / = 0 and thus » = 0, regardless of the
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values of the inhomogeneity couple stress moduli & and B Similar conclusions were reached by Weitsman
(1965) in his plane-strain analysis. _

Since ¢ is necessarily positive by Eq. (174), the parameter b is positive if y > fi. Thus, {3 > 1 if 4 < fi, and
vice versa, i.e., the maximum stress in soft inhomogeneity is reduced, and in stiff inhomogeneity enhanced
by the incorporation of couple stress effects. Similar conclusions were obtained by Wang (1970) in the case
of spherical inhomogeneity, and Gupta (1976) for circular inclusion under conditions of plane strain. On
the other hand, (%" is always greater than one, and {J;' is always less than one (unless u = ). For the rigid
inclusion (i — o), and the void (i — 0) we have, respectively,

21 2L
[ SR - R 196
Srat TR e

confirming the results from earlier sections, and indicating that the couple stress effects increase the
maximum stress in the case of rigid inclusion, and decrease the maximum stress in the case of a void.

Finally, we observe that the solutions for the inclusion and inhomogeneity problems have a simple direct
relationship in the case when the interface is unable to support the couple stress m,4. The transition between
the two solutions is obtained by using the substitution

uf 61‘3 =€ (197)
p+ o

<
w

as can easily be verified by comparing Eqgs. (97)-(100) with Egs. (181)—(186).

9. Conclusion

We have presented in this paper the solutions for selected problems of anti-plane strain couple stress
elasticity, which can be conveniently treated in polar coordinates by using the well-known representations
of solutions for the Laplacian and Helmholtz partial differential equations. An eigenstrain inclusion
problem is solved for uniform and polynomial distribution of the stress-free transformation strain. It is
shown that the strain within a circular inclusion, with a prescribed uniform eigenstrain, can be either
uniform or non-uniform, depending on the type of boundary condition imposed at the interface between
the inclusion and surrounding matrix. The components of the Eshelby tensor are calculated in each case.
Their dependence on the material parameters is discussed. The amplification of the stress concentration
factors is then calculated for circular void, rigid inclusion, and inhomogeneity under remote shear stress. It
is found that the couple stresses decrease the shear stress concentration for softer, and increase for stiffer
inhomogeneities. The comparison is made with related results from axisymmetric and plane-strain prob-
lems. Particular attention is given to different types of interface conditions between the rigid inclusion or
inhomogeneity and the surrounding matrices, and their effects on the stress magnification. The shear stress
and couple stress discontinuities across the interface, and the relationship between the inhomogeneity and
its equivalent eigenstrain inclusion problem are also discussed.
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