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Abstract

The solution for a circular inclusion with a prescribed anti-plane eigenstrain is derived. It is shown that the com-

ponents of the Eshelby tensor within the inclusion, corresponding to a uniform eigenstrain, can be either uniform or

non-uniform, depending on the imposed interface conditions. The stress amplification factors due to circular void or

rigid inclusion in an infinite medium under remote anti-plane shear stress are calculated. The failure of the couple stress

elasticity to reproduce the classical elasticity solution in the limit of vanishingly small characteristic length is indicated

for a particular type of boundary conditions. The solution for a circular inhomogeneity in an infinitely extended matrix

subjected to remote shear stress is then derived. The effects of the imposed interface conditions, the shear stress and

couple stress discontinuities, and the relationship between the inhomogeneity and its equivalent eigenstrain inclusion

problem are discussed.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

As discussed in the preceding paper (Lubarda, 2003a), the motivation to extend the classical to couple

stress and micropolar theory of deformable bodies was to enable the prediction of the size effect experi-

mentally observed in problems with a geometric length scale comparable to material�s microstructural
length. For example, the apparent strength of some materials with stress concentrators is higher for smaller

grain size. The bending and torsional strengths are also higher for very thin beams and wires. The papers by

Mindlin (1963), Kaloni and Ariman (1967), Cowin (1970a), Reddy and Venkatasubramanian (1978),

Majumdar (1982), Kishida et al. (1990), Anthoine (2000) and Chen and Wang (2001, 2002) offer illustrative
examples. The classical theory was also in disagreement with experiments for high-frequency ultra-short

wave propagation problems, if the wavelength becomes comparable to the material�s microstructural length
(Mindlin, 1963; Brulin and Hsieh, 1982; Eringen, 1999). In the presence of couple stresses, shear waves
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propagate dispersively (with a frequency dependent wave speed). Couple stresses are also expected to affect

the singular nature of the crack tip fields (Muki and Sternberg, 1965). An extensive list of references to

micropolar and couple stress elasticity is available in review articles by Dhaliwal and Singh (1987) and

Jasiuk and Ostoja-Starzewski (1995). The research in couple stress and related non-local and strain-
gradient theories of elastic and inelastic material response has recently intensified, due to an increasing

interest to describe the deformation mechanisms and manufacturing of micro- and nanostructured materials

and devices, as well as inelastic localization and instability phenomena (Smyshlyaev and Fleck, 1996; Fleck

and Hutchinson, 1997; De Borst and Van der Giessen, 1998; Valiev et al., 2000). An analysis of the nu-

cleation and propagation of thermoelastic phase transformations within the couple stress theory has been

recently presented by Pettinger and Abeyaratne (2000), while Yavari et al. (2002) studied the effects of the

fracture surface fractality on the order of stress and couple stress singularities in micropolar elastic solids.

The objective of this paper is an analysis of the anti-plane strain problems of circular inclusions and
inhomogeneities within the framework of couple stress elasticity. There has been a significant amount of

research already devoted to inclusions and related problems in couple stress and micropolar elasticity.

Mindlin and Tiersten (1962) and Mindlin (1963) evaluated the influence of couple stress on stress con-

centration around the spherical and circular voids. The corresponding problem within the framework of

micropolar elasticity was addressed by Kaloni and Ariman (1967), who obtained significantly smaller stress

concentration factors by removing the rotation constraint of the couple stress theory. Some of the con-

clusions were critically reexamined by Cowin (1970a) (see also Neuber (1966)). The effect of couple stress on

stress concentration around an elliptical hole was studied by Majumdar (1982). The plane-strain calcula-
tions of stress magnification around a rigid circular inclusion were performed by Banks and Sokolowski

(1968), and around a circular inhomogeneity by Hartranft and Sih (1965), Weitsman (1965) and Gupta

(1976). A spherical inhomogeneity was considered by Wang (1970). Hsieh (1982) presented a general

analysis of non-local micropolar volume defects. Cheng and He (1995, 1997) derived the components of the

non-uniform Eshelby tensor for spherical and circular inclusions in micropolar elasticity, associated with

prescribed uniform eigenstrain and eigencurvature tensors.

In this paper, we apply the couple stress theory to anti-plane strain inclusion and inhomogeneity

problems. The governing equations of three-dimensional couple stress elasticity are summarized in Section
2, and then specialized to anti-plane strain conditions in Section 3. The equations are cast with respect to

both Cartesian and polar coordinates. The anti-plane shearing of a circular annulus bonded to a rigid

cylinder is presented in Section 4. The problem of a circular inclusion with uniform eigenstrain is studied in

Section 5. It is shown that the components of the Eshelby tensor in the inclusion can be either uniform or

non-uniform, depending on the type of interface condition prescribed at the boundary of the inclusion. The

effects of the couple stress moduli on the values of the Eshelby tensor components are determined in each

case. The solution for a circular inclusion with a particular type of the polynomial eigenstrain is also given.

The stress magnification factors due to the void in an infinite matrix under remote anti-plane shear stress is
derived in Section 6, and due to rigid circular inclusion in Section 7. Three types of the boundary conditions

at the interface between the rigid inclusion and the surrounding matrix are considered. It is shown that the

solution obtained by requiring both the zero displacement and zero displacement slope at the interface can

only be achieved within the framework of couple stress elasticity. This solution does not reduce to proper

classical elasticity solution in the limit of vanishingly small characteristic length, because the displacement

slope at the bonded interface does not vanish in classical elasticity. The results presented in Section 8

generalize the results from previous two sections. A circular inhomogeneity is embedded in an infinitely

extended matrix loaded by a remote anti-plane shear stress. Four types of the interface conditions are
introduced, with a detailed calculation given for the interface that cannot transmit a particular component

of the couple stress. The effects of different material properties on the stress amplification are examined. The

shear stress and couple stress discontinuities, and the relationship between the inhomogeneity and its

equivalent eigenstrain inclusion problem are then discussed. The concluding remarks are given in Section 9.
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2. Governing equations of couple stress elasticity

The rotation vector in couple stress theory is not independent of the displacement vector ui, but subject
to the constraint

ui ¼ 1
2
eijkxjk; ð1Þ

as in classical continuum mechanics. The skew-symmetric alternating tensor is eijk, and xij are the rect-

angular components of the infinitesimal rotation tensor. The surface forces are in equilibrium with the non-

symmetric Cauchy stress tij, and the surface couples are in equilibrium with the non-symmetric couple stress
mij, such that Ti ¼ njtji; and Mi ¼ njmji, where nj are the components of the unit vector orthogonal to the
surface element under consideration. In the absence of body forces and body couples, the differential

equations of equilibrium are

tji;j ¼ 0; mji;j þ eijktjk ¼ 0: ð2Þ
By decomposing the stress tensor into its symmetric and antisymmetric part ðtij ¼ rij þ sijÞ, from the

moment equilibrium equation it readily follows that the antisymmetric part can be determined from the

gradient of the couple stress tensor as

sij ¼ �1
2
eijkmlk;l: ð3Þ

If the gradient of the couple stress vanishes at some point, the stress tensor is symmetric at that point. Note

that the normal stress in the plane orthogonal to the direction n is tn ¼ rn ¼ rijninj, because sijninj ¼ 0 in
view of the symmetry of ninj. Thus, the principal stresses of the symmetric tensor rij are also the principal

stresses of the non-symmetric tensor tij, although there are shear stresses in the principal planes of tij due to
shear stresses sij (Lubarda, submitted for publication).
The non-symmetric curvature tensor is the rotation gradient jij ¼ uj;i. The compatibility equations for

the curvature and strain tensors are jij ¼ �ejkl�ik;l. Since �ij is symmetric and eijk is skew-symmetric, the
curvature tensor in the couple stress theory is a deviatoric tensor, jkk ¼ 0. In addition, there is an identity
jij;k ¼ jkj;i, which defines the compatibility equations for curvature components. The compatibility equa-

tions for strain components are the usual Saint–Venant�s compatibility equations.
Assuming that the elastic strain energy is a function of the strain and curvature tensors, W ¼ W ð�ij; jijÞ,

the constitutive relations of couple stress elasticity are

rij ¼
oW
o�ij

; mij ¼
oW
ojij

: ð4Þ

In the case of material linearity, the strain energy is a quadratic function of the strain and curvature
components

W ¼ 1
2
Cijkl�ij�kl þ 1

2
Kijkljijjkl: ð5Þ

The fourth-order tensors of elastic moduli are Cijkl and Kijkl. Since the curvature tensor is not symmetric,

only reciprocal symmetry holds for the couple stress moduli Kijkl ¼ Kklij. The moduli Cijkl are fully sym-

metric. The stresses associated with Eq. (5) are

rij ¼ Cijkl�kl; mij ¼ Kijkljkl: ð6Þ

The antisymmetric part of stress (sij) is indeterminate by the constitutive analysis, but is specified in terms
of the couple stress gradient by Eq. (3). In the case of isotropic material, we have

Cijkl ¼ lðdikdjl þ dildjkÞ þ kdijdkl; Kijkl ¼ 4adikdjl þ 4bdildjk; ð7Þ

where l, k, a, and b are the Lam�ee-type constants of isotropic couple stress elasticity. The stress tensors are
in this case
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rij ¼ 2l�ij þ k�kkdij; mij ¼ 4ajij þ 4bjji: ð8Þ
A spherical part of the couple stress mij does not appear in any of the basic field equations of couple stress

theory, and without loss of physical generality it may be assumed to vanish (Koiter, 1964). Determination

of the couple stress moduli and characteristic lengths for different materials was studied, among others, by

Gauthier and Jahsman (1975), Yang and Lakes (1982), Lakes (1982, 1995), and Bouyge et al. (2001).

Additional references can be found in Eringen (1999).

At any point of a smooth boundary we can specify three reduced stress tractions

T i ¼ njtji � 1
2
eijknjðnpmpqnqÞ;k; ð9Þ

and two tangential couple stress tractions (e.g., Mindlin and Tiersten, 1962; Koiter, 1964)

Mi ¼ njmji � ðnjmjknkÞni: ð10Þ
The conservation integrals of couple stress and micropolar elasticity were studied by Lubarda and Mar-

kenscoff (1999a,b, 2000, 2003).

2.1. Displacement equations of equilibrium

The antisymmetric part of the stress tensor can be expressed as

sij ¼ �2axij;kk ¼ �2ar2xij; ð11Þ
which is independent of b. The Laplacian operator is r2 ¼ o2=oxkoxk. Consequently, by adding (8) and (11)
the total stress tensor is

tij ¼ 2l�ij þ k�kkdij � 2ar2xij: ð12Þ
Thus, the total (asymmetric) stress depends on both strain (�ij) and rotation (xij), i.e., symmetric and

asymmetric parts of the displacement gradient (the couple stress elasticity also being referred to as

asymmetric elasticity; e.g., Grioli, 1960; Nowacki, 1986). Incorporating this into the force equilibrium

equation (2), we obtain the equilibrium equations in terms of displacement components

r2ui � l2r4ui þ
1

1� 2m
o

oxi
ð$ � uÞ ¼ 0; ð13Þ

where m is the Poisson coefficient, and

l2 ¼ a
l
: ð14Þ

Three components of displacement and only two tangential components of rotation may be specified on the

boundary.

3. Governing equations for anti-plane strain

For the anti-plane strain problems, the displacements are

u1 ¼ u2 ¼ 0; u3 ¼ wðx1; x2Þ: ð15Þ

The non-vanishing strain, rotation, and curvature components are

�13 ¼ �31 ¼
1

2

ow
ox1

; �23 ¼ �32 ¼
1

2

ow
ox2

; ð16Þ
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u1 ¼ x23 ¼
1

2

ow
ox2

; u2 ¼ x31 ¼ � 1
2

ow
ox1

; ð17Þ

j11 ¼ �j22 ¼
1

2

o2w
ox1 ox2

; j12 ¼ � 1
2

o2w
ox21

; j21 ¼
1

2

o2w
ox22

: ð18Þ

It readily follows that

r2x13 ¼
1

2

o

ox1
ðr2wÞ; r2x23 ¼

1

2

o

ox2
ðr2wÞ; ð19Þ

so that from Eq. (11)

s31 ¼ �s13 ¼ a
o

ox1
ðr2wÞ; s32 ¼ �s23 ¼ a

o

ox2
ðr2wÞ: ð20Þ

Consequently, from Eq. (12),

t13 ¼ l
o

ox1
ðw� l2r2wÞ; t31 ¼ l

o

ox1
ðwþ l2r2wÞ; ð21Þ

t23 ¼ l
o

ox2
ðw� l2r2wÞ; t32 ¼ l

o

ox2
ðwþ l2r2wÞ: ð22Þ

The couple stresses are related to the curvature components by

m11 ¼ 4ða þ bÞj11 ¼ 2ða þ bÞ o2w
ox1 ox2

; ð23Þ

m22 ¼ 4ða þ bÞj22 ¼ �2ða þ bÞ o2w
ox1 ox2

¼ �m11; ð24Þ

m12 ¼ 4aj12 þ 4bj21 ¼ �2a o
2w
ox21

þ 2b o2w
ox22

; ð25Þ

m21 ¼ 4aj21 þ 4bj12 ¼ 2a
o2w
ox22

� 2b o2w
ox21

: ð26Þ

It is noted that

m12 � m21 ¼ 2ðb � aÞr2w: ð27Þ
Since displacement field is isochoric ð$ � u ¼ 0Þ, the displacement equations of equilibrium (13) reduce to a
single equation

r2w� l2r4w ¼ 0: ð28Þ
The general solution can be expressed as

w ¼ w0 þ w�; ð29Þ
where w0 and w� are the solutions of the partial differential equations

r2w0 ¼ 0; ð30Þ

w� � l2r2w� ¼ 0: ð31Þ
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In view of Eqs. (29)–(31), the following identities hold

r2w ¼ 1

l2
w�; ð32Þ

and

w� l2r2w ¼ w0; wþ l2r2w ¼ w0 þ 2w�; ð33Þ
which can be conveniently used to simplify the stress expressions (21) and (22). For the description of the

governing equations for anti-plane strain in more general micropolar elasticity, see Nowacki (1970) and

Eringen (1999).

3.1. Expressions in polar coordinates

When expressed in terms of polar coordinates, the general solutions of Eqs. (30) and (31), obtained by

separation of variables, are

w0 ¼ ðA0 þ B0 ln rÞðC0 þ hÞ þ
X1
n¼1

ðAnrn þ Bnr�nÞðCn cos nh þ sin nhÞ; ð34Þ

w� ¼ A�
0I0

r
l

� �h
þ B�

0K0
r
l

� �i
ðC�
0 þ hÞ þ

X1
n¼1

A�
nIn

r
l

� �h
þ B�

nKn
r
l

� �i
ðC�

n cos nh þ sin nhÞ: ð35Þ

The functions InðqÞ and KnðqÞ (with q ¼ r=l) in Eq. (35) are the modified Bessel functions of the first and
second kind (of the order n); Watson (1995).
The non-zero strain, rotation and curvature components in polar coordinates are

�h3 ¼ �3h ¼
1

2r
ow
oh

; �r3 ¼ �3r ¼
1

2

ow
or

; ð36Þ

ur ¼ xh3 ¼
1

2r
ow
oh

; uh ¼ x3r ¼ � 1
2

ow
or

; ð37Þ

and

jrr ¼
our

or
¼ 1
2

o

or
1

r
ow
oh

� �
; jrh ¼

ouh

or
¼ � 1

2

o2w
or2

; ð38Þ

jhr ¼
1

r
our

oh
� uh

r
¼ 1

2r2
o2w

oh2
þ 1

2r
ow
or

; ð39Þ

jhh ¼
1

r
ouh

oh
þ ur

r
¼ � 1

2

o

or
1

r
ow
oh

� �
¼ �jrr: ð40Þ

Note that

jrh � jhr ¼ j12 � j21 ¼ �1
2
r2w: ð41Þ

The corresponding couple stress components are (Fig. 1)

mrr ¼ �mhh ¼ 2ða þ bÞ o

or
1

r
ow
oh

� �
; ð42Þ

mrh ¼ �2ða þ bÞ o
2w
or2

þ 2br2w; mhr ¼ �2ða þ bÞ o
2w
or2

þ 2ar2w: ð43Þ
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The shear stresses are

tr3 ¼ l
o

or
ðw� l2r2wÞ; th3 ¼ l

1

r
o

oh
ðw� l2r2wÞ; ð44Þ

t3r ¼ l
o

or
ðwþ l2r2wÞ; t3h ¼ l

1

r
o

oh
ðwþ l2r2wÞ: ð45Þ

In view of Eq. (33), the stress components tr3 and th3 (or t13 and t23) do not depend explicitly on w�, i.e.,

tr3 ¼ l
ow0

or
; th3 ¼ l

1

r
ow0

oh
; ð46Þ

t3r ¼ tr3 þ 2l
ow�

or
; t3h ¼ th3 þ 2l

1

r
ow�

oh
: ð47Þ

The couple stresses, however, affect the values of tr3 and th3 through the imposed boundary conditions. For
example, along an unstressed circular boundary r ¼ R around the origin, the reduced tractions must vanish,

�ttr3 ¼ tr3 �
1

2R
omrr

oh
¼ 0; mrh ¼ 0: ð48Þ

Also note that

mrh ¼ �2ða þ bÞ o
2w
or2

þ 2b
l2

w�; mhr ¼ �2ða þ bÞ o
2w
or2

þ 2a
l2

w�: ð49Þ

4. Anti-plane shear of circular annulus

A simple but illustrative problem of couple stress elasticity is the anti-plane shearing of a circular an-

nulus. Suppose that the inner surface r ¼ R is fixed, while the constant shearing stress r0r3 is applied on the
outer surface r ¼ R0 (Fig. 2). The corresponding displacement field is independent of h and given by

wðrÞ ¼ R0 A ln
r
R

h
þ Bþ CI0

r
l

� �
þ DK0

r
l

� �i
: ð50Þ

Fig. 1. (a) A material element with sides parallel to coordinates directions x1 and x2 under conditions of anti-plane strain; and (b) the
corresponding element with sides parallel to polar directions r and h.
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The integration constants are specified from the boundary conditions

wðRÞ ¼ 0; tr3ðR0Þ ¼ r0r3; mrhðR0Þ ¼ 0: ð51Þ
The fourth boundary condition is obtained by specifying an additional information about the bonded

interface, such as the magnitude of slope dw=dr or the couple stress mrh at r ¼ R. We will proceed by
adopting the first choice, i.e., by assuming that the rotation

uhðRÞ ¼ � 1
2

dw
dr

� �
r¼R

¼ ûuh ð52Þ

is known at the interface. It readily follows from Eqs. (46) to (49) that

A ¼ r0r3
l

; B ¼ �CI0
R
l

� �
� DK0

R
l

� �
; ð53Þ

and

C ¼ l
R0

K1 R
l

� 	
� b R0

R


 � r0r3
l � 2bûuh

bI1 R
l

� 	
þ aK1 R

l

� 	 ; ð54Þ

D ¼ l
R0

I1 R
l

� 	
þ a R0

R


 � r0r3
l þ 2aûuh

bI1 R
l

� 	
þ aK1 R

l

� 	 ; ð55Þ

where

a ¼ a
a þ b

R0
l
I0

R0
l

� �
� I1

R0
l

� �
; b ¼ a

a þ b
R0
l
K0

R0
l

� �
þ K1

R0
l

� �
: ð56Þ

Consequently,

tr3ðrÞ ¼
R0
r

r0r3; ð57Þ

t3rðrÞ ¼
R0
r

r0r3

n
þ 2l r

l
CI1

r
l

� �h
� DK1

r
l

� �io
; ð58Þ

mrhðrÞ ¼ 2ða þ bÞ R0
r2

r0r3
l

�
� C

R0
l2

a
a þ b

I0
r
l

� ��
� l
r
I1

r
l

� ��
� D

R0
l2

a
a þ b

K0
r
l

� ��
þ l
r
K1

r
l

� ���
;

ð59Þ

Fig. 2. A circular annulus of inner radius R and outer radius R0 under shear stress r0r3 over the outer surface. The inner surface of the
cylinder is fixed ðw ¼ 0Þ.
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mrhðrÞ ¼ 2ða þ bÞ R0
r2

r0r3
l

�
� C

R0
l2

b
a þ b

I0
r
l

� ��
� l
r
I1

r
l

� ��
� D

R0
l2

b
a þ b

K0
r
l

� ��
þ l
r
K1

r
l

� ���
:

ð60Þ
If the bonded interface cannot support the couple stress mrh, we set the right-hand side of Eq. (59) equal to

zero and calculate the corresponding rotation ûuh.

5. Circular inclusion with uniform eigenstrain

Suppose that a circular cylinder (inclusion) of radius R is taken out of an infinitely extended medium
(matrix) and given a uniform stress-free transformation (eigenstrain) of anti-plane shear type. The corres-

ponding displacement is a linear function of the rectangular coordinates, such that

w

in ¼ 2rð�
13 cos h þ �
23 sin hÞ; ð61Þ

where �
13 and �
23 are the constant eigenstrain components. When the cylinder is inserted back into the
matrix, with their interface perfectly bonded, the displacement fields inside and outside the inclusion are,

respectively,

win ¼ w0in þ w�
in ¼ rðA1 cos h þ B1 sin hÞ þ RI1

r
l

� �
ðC1 cos h þ D1 sin hÞ; ð62Þ

wout ¼ w0out þ w�
out ¼

R2

r
ðA2 cos h þ B2 sin hÞ þ RK1

r
l

� �
ðC2 cos h þ D2 sin hÞ: ð63Þ

The functions w0in and w0out satisfy the Laplacian equation, while w�
in and w�

out satisfy the equation
l2r2w� ¼ w�. The boundary conditions at the bonded interface are

win ¼ wout; �ttinr3 ¼ �ttoutr3 ; minrh ¼ moutrh at r ¼ R: ð64Þ

The reduced tractions at the interface are defined by

�ttinr3 ¼ tinr3 �
1

2R
ominrr
oh

; �ttoutr3 ¼ toutr3 � 1

2R
omoutrr

oh
: ð65Þ

The conditions (64) are not sufficient to specify all constants appearing in Eqs. (62) and (63). An additional

condition is needed, which can be selected in several ways. An appealing condition is obtained by requiring

that the shear stress t3r is continuous across the interface, i.e.,

tin3r ¼ tout3r at r ¼ R: ð66Þ

In classical non-polar elasticity, this condition is automatically satisfied by the imposed interface condition

tinr3 ¼ toutr3 , since the stress tensor in non-polar elasticity is a symmetric tensor. Another possibility to specify

the additional interface condition is to stipulate the relationship between the rotation components uh across
the interface. For example, in classical elasticity a posteriori calculations reveal that uinh ¼ �uouth at r ¼ R.
While one may assume that the same relationship holds in couple stress elasticity, it is likely that this re-

lationship will be altered to some extent by the presence of the couple stress mrh at the interface. The precise

relationship is therefore not known in advance. Of course, if one assumes that the interface cannot transmit

the couple stress mrh during the insertion of the inclusion into the matrix material, the additional interface

condition would be simply mrh ¼ 0 at r ¼ R. Actually, one may show that various possibilities can all be
deduced by the specification of the appropriate (corresponding) value of the couple stress mrh at the in-

terface. We shall proceed with further calculations by adopting the condition (66). The condition
mrhðR; hÞ ¼ 0 will be considered within Section 8.1.
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To apply the boundary (interface) conditions (64) and (66), we first derive the general expressions for the

shear and couple stress components. It readily follows that

tinr3 ¼ l
o

or
ðw0in � w


inÞ ¼ lðA1 � 2�
13Þ cos h þ lðB1 � 2�
23Þ sin h; ð67Þ

toutr3 ¼ l
ow0out
or

¼ �l
R2

r2
ðA2 cos h þ B2 sin hÞ; ð68Þ

tin3r ¼ tinr3 þ 2l
ow�

in

or

¼ l A1

�
� 2�
13 þ 2

R
r

I1
r
l

� �h
þ r

l
I2

r
l

� �i
C1

�
cos h þ l B1

�
� 2�
23 þ 2

R
r

I1
r
l

� �h
þ r

l
I2

r
l

� �i
D1

�
sin h;

ð69Þ

tout3r ¼ toutr3 þ 2l ow�
out

or

¼ �l
R2

r2
A2

�
� 2R

r
K1

r
l

� �h
� r

l
K2

r
l

� �i
C2

�
cos h � l

R2

r2
B2

�
� 2R

r
K1

r
l

� �h
� r

l
K2

r
l

� �i
D2

�
sin h;

ð70Þ

minrr ¼ 2ða þ bÞ o

or
1

r
owin
oh

� �
¼ �2ða þ bÞ R

rl
I2

r
l

� �
ðC1 sin h � D1 cos hÞ; ð71Þ

moutrr ¼ 2ða þ bÞ o

or
1

r
owout
oh

� �
¼ 2ða þ bÞ R

r2
2
R
r
A2

�
þ r

l
K2

r
l

� �
C2

�
sin h � 2ða þ bÞ R

r2
2
R
r
B2

�
þ r

l
K2

r
l

� �
D2

�
cos h; ð72Þ

minrh ¼ �2ða þ bÞ o
2win
or2

þ 2b
l2

w�
in ¼ 2lR

a þ b
a

l
r
I2

r
l

� ��
� I1

r
l

� ��
ðC1 cos h þ D1 sin hÞ; ð73Þ

moutrh ¼ �2ða þ bÞ o
2wout
or2

þ 2b
l2

w�
out

¼ �2lR 2
a þ b

a
Rl2

r3
A2

�
þ K1

r
l

� ��
þ a þ b

a
l
r
K2

r
l

� ��
C2

�
cos h

� 2lR 2
a þ b

a
Rl2

r3
B2

�
þ K1

r
l

� ��
þ a þ b

a
l
r
K2

r
l

� ��
D2

�
sin h: ð74Þ

The three interface conditions (64) now become

A1 � A2 þ I1C1 � K1C2 ¼ 0; ð75Þ

A1 þ 1

�
þ 2 a þ b

lR2

�
A2 þ

a þ b
lRl

ðI2C1 þ K2C2Þ ¼ 2�
13; ð76Þ
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2A2 �
lR2

a þ b
ðI1C1 � K1C2Þ þ

R
l
ðI2C1 þ K2C2Þ ¼ 0; ð77Þ

and

B1 � B2 þ I1D1 � K1D2 ¼ 0; ð78Þ

B1 þ 1

�
þ 2 a þ b

lR2

�
B2 �

a þ b
lRl

ðI2D1 þ K2D2Þ ¼ 2�
23; ð79Þ

2B2 �
lR2

a þ b
ðI1D1 � K1D2Þ þ

R
l
ðI2D1 þ K2D2Þ ¼ 0: ð80Þ

In above equations, for brevity, the notation is used

Im ¼ Im
R
l

� �
; Km ¼ Km

R
l

� �
; m ¼ 0; 1; 2: ð81Þ

The continuity condition (66) furthermore gives

A1 þ A2 þ 2 I1

�
þ R

l
I2

�
C1 � 2 K1

�
� R

l
K2

�
C2 ¼ 2�
13; ð82Þ

B1 þ B2 � 2 I1

�
þ R

l
I2

�
D1 � 2 K1

�
� R

l
K2

�
D2 ¼ 2�
23: ð83Þ

The solution of the system of Eqs. (75)–(77) and (82) is

A1 ¼ 1

�
� 4
a

�
�
13; A2 ¼ �
13; ð84Þ

C1 ¼
2

abI0
3
l
R
K1
K0

�
þ 2
�
�
13; C2 ¼

2

abK0
3
l
R
I1
I0

�
� 2
�
�
13; ð85Þ

where

a ¼ 1þ 2 a
a þ b

R2

l2
; b ¼ I1

I0
þ K1
K0

: ð86Þ

Similarly, the solution of the system of Eqs. (78)–(81) and (83) is

B1 ¼ 1

�
� 4
a

�
�
23; B2 ¼ �
23; ð87Þ

D1 ¼
2

abI0
3
l
R
K1
K0

�
þ 2
�
�
23; D2 ¼

2

abK0
3
l
R
I1
I0

�
� 2
�
�
23: ð88Þ

The coefficient 1� 4=a, appearing in Eqs. (84) and (87), is

1� 4
a
¼
2� 3 a þ b

a
l2

R2

2þ a þ b
a

l2

R2

: ð89Þ
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If l=R ! 0, the parameter a ! 1, while

I1
r
l

� �
C1 ¼ I1

r
l

� �
D1 ! 0; K1

r
l

� �
C2 ¼ K1

r
l

� �
D2 ! 0; ð90Þ

and A1 ¼ A2 ¼ �
13 and B1 ¼ B2 ¼ �
23, in agreement with the results from non-polar elasticity.

5.1. Components of non-uniform Eshelby’s tensor

The strain components within the inserted inclusion are

�inr3 ¼
1

2

owin
or

¼ 1
2

A1

�
þ R

l
I0

r
l

� ��
� l
r
I1

r
l

� ��
C1

�
cos h þ 1

2
B1

�
þ R

l
I0

r
l

� ��
� l
r
I1

r
l

� ��
D1

�
sin h; ð91Þ

�inh3 ¼
1

2r
owin
oh

¼ � 1
2

A1

�
þ R

r
I1

r
l

� �
C1

�
sin h þ 1

2
B1

�
þ R

r
I1

r
l

� �
D1

�
cos h: ð92Þ

Upon substitution of the expressions (84), (85), (87), and (88) for the constants A, B, C, and D, we obtain

�inr3 ¼ 2Sr3r3 �
r3; �inh3 ¼ 2Sh3h3 �


h3; ð93Þ

where Sr3r3 and Sh3h3 are the components of non-uniform Eshelby�s tensor (Eshelby, 1957). These are here
defined by

Sr3r3 ¼
1

4
1

�
� 4
a
þ 2

abI0
3
l
R
K1
K0

�
þ 2
�
R
l

I0
r
l

� ��
� l
r
I1

r
l

� ���
; ð94Þ

Sh3h3 ¼
1

4
1

�
� 4
a
þ 2

abI0
3
l
R
K1
K0

�
þ 2
�
R
r
I1

r
l

� ��
: ð95Þ

It is noted that the material properties enter these expressions only through the ratios a=b and a=l (or l). If
l=R ! 0, the strain field within the inclusion becomes uniform, with Sr3r3 ¼ Sh3h3 ¼ 1=4 (independent of
material properties). A non-uniformity of the Eshelby tensor in the case of spherical and circular inclusions

in a micropolar elastic medium has been demonstrated by Cheng and He (1995, 1997). In their work the

microrotations are independent of the displacement field, and the results cannot be simply reduced to our

results of the constrained rotation and couple stress elasticity. Under what combination of material
parameters the solution of a micropolar elasticity problem reduces to the solution of the corresponding

couple stress elasticity problem was discussed by Mindlin (1963), Kaloni and Ariman (1967), Eringen

(1968), Cowin (1970a,b) and Lakes (1985). The antisymmetric part of the stress tensor in micropolar

elasticity (independent microrotation ui) is specified by the constitutive expression sij ¼ 2�llðxij � eijkukÞ,
where �ll is the micropolar shear (rotational) modulus, while sij is indeterminate by the constitutive analysis
in couple stress elasticity, where xij ¼ eijkuk and l ! 1.
It should be observed, however, that the non-uniformity of strain within the inclusion is associated with

the imposed condition on the continuity of traction t3rðR; hÞ. If, instead of (66), we assume that the interface
cannot support the couple stress mrh, i.e.,

minrhðR; hÞ ¼ moutrh ðR; hÞ ¼ 0; ð96Þ
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we obtain

A1 ¼
1

c
K0
K1

�
þ a

a þ b
R
l

�
�
13; A2 ¼ �
13; ð97Þ

I1C1 ¼ 0; K1C2 ¼ � 2
c
l
R
�
13; ð98Þ

where

c ¼ K0
K1

þ 2 l
R
þ a

a þ b
R
l
: ð99Þ

The expressions for B1, B2, D1 and D2 are obtained from Eqs. (97) and (98) by replacing �
13 with �
23. The
corresponding displacements are

win ¼
1

c
K0
K1

�
þ a

a þ b
R
l

�
r�
r3; wout ¼

R2

r

�
� 2l

c
1

K1
K1

r
l

� ��
�
r3: ð100Þ

They depend on the material properties through the ratios a=b and a=l (or l). The strain components
within the inclusion are

�inr3 ¼
1

2c
K0
K1

�
þ a

a þ b
R
l

�
�
r3; �inh3 ¼

1

2c
K0
K1

�
þ a

a þ b
R
l

�
�
h3; ð101Þ

where

�
r3 ¼ �
13 cos h þ �
23 sin h; �
h3 ¼ ��
13 sin h þ �
23 cos h: ð102Þ
The components of, in this case uniform, Eshelby tensor are

Sr3r3 ¼ Sh3h3 ¼
1

4c
K0
K1

�
þ a

a þ b
R
l

�
: ð103Þ

5.2. Circular inclusion with a polynomial eigenstrain

We extend here the analysis to the case of a circular cylindrical inclusion that has undergone a particular

type of the polynomial eigenstrain described by the displacement field

w

in ¼

rn

Rn�1 ðg


13 cos nh þ g
23 sin nhÞ; ð104Þ

where g
13 and g
23 are the constants (for a more general polynomial eigenstrain in the case of classical
elasticity, see Mura, 1987). The inside and outside displacement fields after the cylinder is inserted back into
the matrix are, respectively,

win ¼
rn

Rn�1 ðA1 cos nh þ B1 sin nhÞ þ RIn
r
l

� �
ðC1 cos nh þ D1 sin nhÞ; ð105Þ

wout ¼
Rnþ1

rn
ðA2 cos nh þ B2 sin nhÞ þ RKn

r
l

� �
ðC2 cos nh þ D2 sin nhÞ: ð106Þ

The boundary conditions at the bonded interface, specified by Eqs. (64) and (66), then give

A1 � A2 þ InC1 � KnC2 ¼ 0; ð107Þ

1

�
þ 1

n2
a

a þ b
R2

l2

�
ðA1 þ A2Þ � ðA1 � A2Þ þ

1

n
R
l
ðInþ1C1 þ Knþ1C2Þ ¼

1

n2
a þ b

a
R2

l2
g
13; ð108Þ
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nðA1 þ A2Þ � n2
�

� a
a þ b

R2

l2

�
ðA1 � A2Þ þ

R
l
ðInþ1C1 þ Knþ1C2Þ ¼ 0; ð109Þ

A1 þ A2 � 2ðA1 � A2Þ þ
2

n
R
l
ðInþ1C1 þ Knþ1C2Þ ¼ g
13; ð110Þ

with similar expressions for the constants B and D.
The solution of the system of Eqs. (107)–(110) is

A1 ¼
g
13
2a

3n
�

� a
a þ b

2

n
R2

l2

�
þ n2ðn� 1Þ l

2

R2

��
; ð111Þ

A2 ¼
g
13
2a

3n
�

� 4� a
a þ b

2

n
R2

l2

�
þ n2ðn� 1Þ l

2

R2

��
; ð112Þ

C1 ¼ � g
13
ab

1

In�1
2

�
þ n
�

þ 2� a
a þ b

n2ðn� 1Þ l
2

R2

�
l
R

Kn

Kn�1

�
; ð113Þ

C2 ¼
g
13
ab

1

Kn�1
2

�
� n
�

þ 2� a
a þ b

n2ðn� 1Þ l
2

R2

�
l
R

In
In�1

�
; ð114Þ

where

a ¼ n� 2� a
a þ b

2

n
R2

l2

�
� n2ðn� 1Þ l

2

R2

�
; b ¼ In

In�1
þ Kn

Kn�1
: ð115Þ

The integration constants B1, B2, D1, and D2 are obtained from Eqs. (111) to (114) by replacing g
13 with g


23.

When n ¼ 1, we recover the expressions (84)–(88) for the inclusion under uniform initial eigenstrain

g
13 ¼ 2�
13 and g
23 ¼ 2�
23. Similar analysis can be performed if, instead of the continuity of traction t3rðR; hÞ,
we require that the interface cannot transmit the couple stress mrhðR; hÞ.

6. Circular void in an infinite medium

Consider a stress-free circular void of radius R in an infinite medium under remote shear stresses r1
13 and

r1
23. The displacement field is w ¼ w0 þ w�, where

w0 ¼ r1
13

l
r

�
þ A

R2

r

�
cos h þ r1

23

l
r

�
þ B

R2

r

�
sin h; ð116Þ

w� ¼ RK1
r
l

� �
ðC cos h þ D sin hÞ: ð117Þ

The constants A, B, C, and D are determined from the boundary conditions of vanishing reduced stress
tractions along the surface of the hole r ¼ R, which are

�ttr3 ¼ tr3 �
1

2R
omrr

oh
¼ 0; mrh ¼ 0: ð118Þ

The boundary conditions giving rise to uniform shear stresses r1
13 and r1

23 at r ! 1 are identically satisfied

by the selected form of the displacement function. The first condition (118) gives
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lR2



þ 2ða þ bÞ
�
Aþ ða þ bÞ K1

R
l

� ��
� R

l
K 0 R

l

� ��
C ¼ R2r1

13; ð119Þ

lR2



þ 2ða þ bÞ
�
Bþ ða þ bÞ K1

R
l

� ��
� R

l
K 0 R

l

� ��
D ¼ R2r1

23; ð120Þ

and the second

2ða þ bÞAþ R2

l2
ða
�

þ bÞK 00
1

R
l

� �
� bK1

R
l

� ��
C ¼ 0; ð121Þ

2ða þ bÞBþ R2

l2
ða
�

þ bÞK 00
1

R
l

� �
� bK1

R
l

� ��
D ¼ 0: ð122Þ

It readily follows that

A ¼ a
b

r1
13

l
; B ¼ a

b
r1
23

l
; C ¼ � 2

b
r1
13

l
; D ¼ � 2

b
r1
23

l
; ð123Þ

with the parameters

a ¼ a0 þ 2K1; b ¼ a0 þ 4K1; a0 ¼
R
l
K0 þ

a
a þ b

R2

l2
K1: ð124Þ

The values of the modified Bessel functions at r ¼ R are denoted by K0 and K1. The resulting displacement
field is

w ¼ r
�

þ a
b
R2

r
� 2R

b
K1

r
l

� �� r1
r3

l
; ð125Þ

where

r1
r3 ¼ r1

13 cos h þ r1
23 sin h: ð126Þ

In the limit as R=l ! 1, the ratio a=b ! 1 and we recover the classical elasticity result

w ¼ r
�

þ R2

r

�
r1
r3

l
: ð127Þ

To evaluate the effect of the couple stresses on the stress concentration at the points on the surface of the

hole, consider the shear stress components th3 and t3h at r ¼ R. It is found that

th3 ¼
2c
b

r1
h3; t3h ¼ 1

�
þ d

b

�
r1

h3; ð128Þ

with c ¼ a0 þ 3K1, d ¼ a0 � 2K1 and
r1

h3 ¼ �r1
13 sin h þ r1

23 cos h: ð129Þ
The stress magnification factor for the shear stress th3 ¼ 2fr1

h3 due to couple stress effects is

f ¼ c
b
¼

a
a þ b

þ l
R
3
l
R
þ K0
K1

� �
a

a þ b
þ l
R
4
l
R
þ K0
K1

� � : ð130Þ

For example, for a small hole with the radius R ¼ 3l and with b ¼ 0, this gives f ¼ 0:936 (indicating a
decrease of the maximum stress due to couple stress effects). The stress concentration factors in the case of

V.A. Lubarda / International Journal of Solids and Structures 40 (2003) 3827–3851 3841



the void in an infinite plate under remote tension were calculated by Mindlin (1963). The effect of couple

stresses on stress concentration is less pronounced if the model of micropolar elasticity is used, where the

material rotation is independent of the displacement components (Kaloni and Ariman, 1967; Cowin, 1970a;

Eringen, 1999).

7. Rigid circular inclusion

In this section we consider a rigid circular inclusion of radius R within an infinitely extended medium
under remote loading r1

r3 , defined in Eq. (126). We want to examine the stress magnification due to couple

stress effects. The displacement field is

w ¼ R
r1
13

l
r
R

�
þ A

R
r
þ CK1

r
l

� ��
cos h þ R

r1
23

l
r
R

�
þ B

R
r
þ DK1

r
l

� ��
sin h: ð131Þ

The integration constants can be determined from the boundary conditions at the surface of the rigid in-

clusion

wðR; hÞ ¼ 0; mrhðR; hÞ ¼ m0rh ¼ lða12 cos h � a21 sin hÞ; ð132Þ

where la12 ¼ m12ðR; 0Þ and la21 ¼ m21ðR; 0Þ are assumed to be given constants. While the first boundary
condition at the bonded interface in (132) is obvious, the second one needs an explanation. In general, we
do not know a12 and a21 in advance, but we shall be able to relate these parameters to specific types
of interface. For example, if the interface cannot transmit the couple stress m0rh, these parameters are
identically equal to zero. Other possibilities will be discussed in the sequel. In any case, it readily follows

that

A ¼ �K1C � r1
13

l
; B ¼ �K1D� r1

23

l
; ð133Þ

and

K1C ¼ 1
c
2l
R

r1
13

l

�
� a

a þ b
a12
2l

�
; K1D ¼ 1

c
2l
R

r1
23

l

�
þ a

a þ b
a21
2l

�
; ð134Þ

where

c ¼ K0
K1

þ a
a þ b

R
l
: ð135Þ

The displacement field is

w ¼ r
�

� R2

r
þ 1

c
1

K1
K1

r
l

� ��
� R

r

�
2l
�

� R
2l

a
a þ b

m0rh
r1
r3

��
r1
r3

l
: ð136Þ

The corresponding stress and couple stress components in the matrix material readily follow from Eqs. (46),

(47) and (49). For example, at r ¼ R we have

tr3ðR; hÞ ¼ 2r1
r3 þ

1

c
2l
R

r1
r3

�
� a

a þ b
m0rh
2l

�
; ð137Þ

t3rðR; hÞ ¼ 2r1
r3 �

1

c
1

�
þ 2K0

K1

R
l

�
2l
R

r1
r3

�
� a

a þ b
m0rh
2l

�
: ð138Þ
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The corresponding symmetric and antisymmetric parts are

rr3ðR; hÞ ¼ 2r1
r3 �

1

c
K0
K1

R
l
2l
R

r1
r3

�
� a

a þ b
m0hr
2l

�
; ð139Þ

sr3ðR; hÞ ¼
1

c
1

�
þ K0
K1

R
l

�
2l
R

r1
r3

�
� a

a þ b
m0rh
2l

�
: ð140Þ

The other two shear stress components are

th3ðR; hÞ ¼ �t3hðR; hÞ ¼ � 1
c
2l
R

r1
h3

�
þ a

a þ b
m0hr
2l

�
; ð141Þ

where

m0hr ¼ �lða12 sin h þ a21 cos hÞ: ð142Þ

The h component of the rotation at the surface of the bonded inclusion is

uhðR; hÞ ¼ � 1

2l
rr3ðR; hÞ: ð143Þ

7.1. Particular types of interface conditions

7.1.1. Type I: The bonded interface cannot transmit the couple stress mrh

In this case we set m0rh ¼ 0 in Eq. (136) to obtain

w ¼ r
�

� R2

r
þ 2l

c
1

K1
K1

r
l

� ��
� R

r

��
r1
r3

l
: ð144Þ

Accordingly, Eqs. (137)–(141) give

tr3ðR; hÞ ¼ 2 1
�

þ l
cR

�
r1
r3 ; t3rðR; hÞ ¼ 2 1

�
� 1

c
l
R

�
þ 2K0

K1

��
r1
r3 ; ð145Þ

rr3ðR; hÞ ¼ 2 1
�

� 1
c
K0
K1

�
r1
r3 ; sr3ðR; hÞ ¼

2

c
l
R

�
þ K0
K1

�
r1
r3 ; ð146Þ

th3ðR; hÞ ¼ �t3hðR; hÞ ¼ � 2
c
l
R

r1
h3: ð147Þ

The rotation at the interface is

uhðR; hÞ ¼ � 1

�
� 1

c
K0
K1

�
r1
r3

l
: ð148Þ

The magnification factors due to couple stress effects are easily extracted from above expressions. For

example, if l ¼ R=3 and b ¼ 0, the magnification factor for tr3ðR; hÞ is

f ¼ 1þ l
cR

¼ 1:086: ð149Þ

As expected, the couple stress effects enhance the stress concentration around the rigid inclusion. This
increase is more pronounced for higher values of b, and in the limit as b ! a, f approaches the value of
1.141 (for R ¼ 3l).
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7.1.2. Type II: The rotation uh at the bonded interface as in classical elasticity

If it is assumed that the couple stress mrh does not affect the rotation uh ate the bonded surface of the

inclusion, so that the material rotation there (or the slope ow=or) is as predicted by the classical elasticity
calculations, we set

uhðR; hÞ ¼ � r1
r3

l
: ð150Þ

From Eqs. (139) and (143) it then follows that the corresponding couple stress at the interface is

m0rh ¼ mrhðR; hÞ ¼ 4
l2

R
a þ b

a
r1
r3 : ð151Þ

The displacement field becomes

w ¼ r
�

� R2

r

�
r1
r3

l
: ð152Þ

It furthermore follows that antisymmetric parts of the shear stress vanish, while

rr3 ¼ l
ow
or

¼ 1

�
þ R2

r2

�
r1
r3 ; rh3 ¼ l

1

r
ow
oh

¼ 1

�
� R2

r2

�
r1

h3: ð153Þ

In this case, therefore, there is no magnification of stress due to couple stress effects, and the stress con-

centration factor for rr3 is equal to 2 (as in classical elasticity). The corresponding couple stresses are

distributed according to

mrr ¼ �mhh ¼ 4
a þ b

a
R2l2

r3
r1

h3; mrh ¼ mhr ¼ 4
a þ b

a
R2l2

r3
r1
r3 ; ð154Þ

where the shear stress r1
h3 is defined in Eq. (129) and r1

r3 in Eq. (126).

7.1.3. Type III: The rotation uh vanishes at the bonded interface

Since 2uh ¼ �ow=or, this type of interface is characterized by the zero displacement slope

ow
or

� �
r¼R

¼ 0: ð155Þ

The condition (155) implies that both the shear strain �r3 and the symmetric component of shear stress rr3

vanish at the interface. The couple stress m0rh required to maintain the zero slope condition (155) is obtained
from Eq. (139) by setting rr3ðR; hÞ ¼ 0, which gives

m0rh ¼ �4l K1
K0

r1
r3 : ð156Þ

The displacement field is

w ¼ r
�

� R2

r
þ 2l K1

K0

1

K1
K1

r
l

� ��
� R

r

��
r1
r3

l
: ð157Þ

Since the symmetric component of shear stress vanishes at the interface, the total shear stress there is

sr3ðR; hÞ ¼ �s3rðR; hÞ ¼ 2 1
�

þ 1
c

l
R

�
þ a

a þ b
K1
K0

��
r1
r3 : ð158Þ
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The limiting process l=r ! 0 reveals that

m0rh ¼ 0; sr3ðR; hÞ ¼ �s3rðR; hÞ ¼ 2r1
r3 : ð159Þ

This is an unacceptable solution in classical elasticity, where the stress tensor is necessarily symmetric. The

physical reason for the failure of the limiting process to recover the classical elasticity results is that the

rotation uh at the interface, as imposed by Eq. (155), does not vanish in classical elasticity but is equal to

�r1
r3=l. Thus, the condition (155) at the interface between rigid inclusion and the surrounding matrix can

be achieved only within the framework of couple stress elasticity with a non-vanishing characteristic length
l. In this case it is also noted that rh3ðR; hÞ ¼ 2r1

h3 and

sh3ðR; hÞ ¼ �s3hðR; hÞ ¼ � 1

2c
4l
R

r1
h3

�
þ a

a þ b
m0hr

�
; ð160Þ

where

m0hr ¼ 4l
K1
K0

r1
h3; r1

h3 ¼ �r1
13 sin h þ r1

23 cos h: ð161Þ

In the limit as l=R ! 0, the couple stress m0hr and the shear stress component sh3ðR; hÞ both tend to zero.
In a different context, within the class of singular plane strain crack problems, the failure of the couple

stress elasticity solution to reduce to classical elasticity solution in the limiting process of the vanishing

characteristic length was discussed by Sternberg and Muki (1967). It should also be noted that an analo-

gous condition to (155) of vanishing rotation at the bonded interface was used in plane strain calculations
of stress magnification under uniaxial tension by Banks and Sokolowski (1968), although no discussion of

the relationship to classical elasticity solution was given in the limit of vanishingly small characteristic

length.

8. Circular inhomogeneity

We now consider a more general case of the circular inhomogeneity of radius R and material properties
l̂l, âa and b̂b, surrounded by an infinite matrix with material properties l, a and b, under remote shear loading
r1
r3 as in Eq. (126). The displacement functions are

win ¼ bAAr�
þ bCCRI1

r

l̂l

� ��
cos h þ bBBr�

þ bDDRI1
r

l̂l

� ��
sin h; ð162Þ

wout ¼
r1
13

l
r

�
þ A

R2

r
þ CRK1

r
l

� ��
cos h þ r1

23

l
r

�
þ B

R2

r
þ DRK1

r
l

� ��
sin h; ð163Þ

where l̂l2 ¼ âa=l̂l and l2 ¼ a=l. The boundary conditions at the bonded interface are taken to be

winðR; hÞ ¼ woutðR; hÞ; ð164Þ

�ttinr3ðR; hÞ ¼ �ttoutr3 ðR; hÞ; ð165Þ

minrhðR; hÞ ¼ moutrh ðR; hÞ ¼ m0rh: ð166Þ

The couple stress m0rh ¼ lða12 cos h � a21 sin hÞ is assumed to be known at the points of the interface. The
four equations for the constants bAA, A, bCC and C, resulting from the imposed boundary conditions, are
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bAA � Aþ bII1 bCC � K1C ¼ r1
13

l
; ð167Þ

l̂lbAA þ l 1

�
þ 2 a þ b

a
l2

R2

�
Aþ l̂l

âa þ b̂b
âa

l̂l
R
bII2 bCC þ l

a þ b
a

l
R
K2C ¼ r1

13; ð168Þ

âa þ b̂b
âa

l̂l
R
bII2 bCC � bII1 bCC ¼ l

R
a12
2l̂l

; ð169Þ

2
a þ b

a
l2

R2
Aþ K1C þ a þ b

a
l
R
K2C ¼ � l

R
a12
2l

: ð170Þ

In above equations, for brevity, the notation is used

bIIm ¼ Im
R

l̂l

� �
; Km ¼ Km

R
l

� �
; m ¼ 0; 1; 2: ð171Þ

The solution of the system of Eqs. (167)–(170) is

A ¼ l � l̂l
l þ l̂l

r1
13

l

�
þ K1C

�
; bAA ¼ 2

l þ l̂l
r1
13

�
þ lK1C

	
� bII1 bCC ; ð172Þ

bII1 bCC ¼ 1
ĉc
l
R
a12
2l̂l

; K1C ¼ � 1
c
2l
R

l � l̂l
l þ l̂l

r1
13

l

 
þ a

a þ b
a12
2l

!
; ð173Þ

where

ĉc ¼ âa þ b̂b
âa

l̂l
R

bII2bII1 � 1; c ¼ K0
K1

þ 4l
R

l
l þ l̂l

þ a
a þ b

R
l
: ð174Þ

The constants bBB, B, bDD and D are defined by the same expressions, except that r1
13 is replaced by r1

23, and a12
by �a21. The results for the rigid inclusion and void are recovered in the limits ðl̂l; âa; b̂b ! 1, l̂l ! 0) and

ðl; a; b ! 0, l ! 0), respectively.

8.1. Different interface conditions

Four types of interface conditions may be considered regarding the specification of the couple stress m0rh.
The first type is based on the assumption that the interface cannot transmit this couple stress at all, i.e.,

m0rh ¼ 0 ða12 ¼ a21 ¼ 0Þ: ð175Þ
The second type of interface condition is obtained if it is required that the rotations uinh ðR; hÞ and uouth ðR; hÞ
are related to each other in the same manner as in classical elasticity. Since displacement fields in classical

elasticity are

win ¼ 2r
r1
r3

l þ l̂l
; wout ¼ r

 
þ l � l̂l

l þ l̂l
R2

r

!
r1
r3

l
; ð176Þ

there follows

owin
or

¼ 2 r1
r3

l þ l̂l
;

owout
or

¼ 1

 
� l � l̂l

l þ l̂l
R2

r2

!
r1
r3

l
: ð177Þ

3846 V.A. Lubarda / International Journal of Solids and Structures 40 (2003) 3827–3851



Thus, at r ¼ R we have

l̂l
owin
or

¼ l
owout
or

; ð178Þ

which is then required to also hold in couple stress elasticity.
The third type of interface condition is obtained by requiring that the rotations at the interface are

actually equal to each other, so that

owin
or

¼ owout
or

at r ¼ R: ð179Þ

Naturally, the couple stress elasticity solution for this type of interface does not reduce to classical elasticity

in the limit of vanishing couple stress effects, because the relationship (178) and not (179) holds at the

interface in classical elasticity. The equal rotations at the interface between the circular inhomogeneity and

the surrounding matrix were also assumed in plane strain calculations of stress magnification under uni-

axial tension by Hartranft and Sih (1965) and Weitsman (1965), but without discussion of the relationship
to classical elasticity solution in the limit of vanishingly small characteristic length. The relationship

between the rotations in classical plain-strain elasticity can be calculated from the results obtained by

Lubarda and Markenscoff (1999a).

Finally, the fourth type of interface condition may be associated with the requirement for the continuity

of the shear stress t3r across the interface, i.e.,

tin3rðR; hÞ ¼ tout3r ðR; hÞ: ð180Þ

In the subsequent calculations, we shall adopt the first type of interface condition, defined by the vanishing

couple stress along the interface and Eq. (175). (This type of interface condition is to some extent similar to

the so-called slipping interface of classical plane-strain elasticity which can transmit the normal stress rrr,
but not the shear stress rrh). It readily follows that bII1 bCC ¼ bII1 bDD ¼ 0, and

A ¼ l � l̂l
l þ l̂l

r1
13

l

�
þ K1C

�
; B ¼ l � l̂l

l þ l̂l
r1
23

l

�
þ K1D

�
; ð181Þ

bAA ¼ 2

l þ l̂l
r1
13

�
þ lK1C

	
; bBB ¼ 2

l þ l̂l
r1
23

�
þ lK1D

	
; ð182Þ

K1C ¼ �b
r1
13

l
; K1D ¼ �b

r1
23

l
: ð183Þ

The parameter b is defined by

b ¼ 2
c
l
R

l � l̂l
l þ l̂l

; ð184Þ

with c as in Eq. (174). The displacement fields are accordingly

win ¼ 2ð1� bÞr r1
r3

l þ l̂l
; ð185Þ

wout ¼ r

"
þ ð1� bÞ l � l̂l

l þ l̂l
R2

r
� b

R
K1

K1
r
l

� �# r1
r3

l
: ð186Þ
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The corresponding shear stress components are

tinr3 ¼ ð1� bÞ 2l̂l
l þ l̂l

r1
r3 ; toutr3 ¼ 1

"
� ð1� bÞ l � l̂l

l þ l̂l
R2

r2

#
r1
r3 ; ð187Þ

tinh3 ¼ ð1� bÞ 2l̂l
l þ l̂l

r1
h3; touth3 ¼ 1

"
þ ð1� bÞ l � l̂l

l þ l̂l
R2

r2

#
r1

h3: ð188Þ

Clearly, there is a uniform stress and strain distribution and no couple stresses at all within the inhomo-

geneity, for the considered type of interface that is incapable to transmit the couple stress mrhðR; hÞ. A
discontinuity in shear stress t3r across the interface is

tout3r ðR; hÞ � tin3rðR; hÞ ¼ b 3

�
þ 2R

l
K0
K1

�
r1
r3 : ð189Þ

The couple stresses in the outside material are

moutrr ¼ �mouthh ¼ �4ða þ bÞ l � l̂l
l þ l̂l

1

r
ð1
�

� bÞR
2

r2
� 1

cK1
K0

r
l

� ��
þ l
r
K1

r
l

� ��� r1
h3

l
; ð190Þ

moutrh ¼ �4ða þ bÞ l � l̂l
l þ l̂l

1

r
ð1
�

� bÞR
2

r2
� 1

cK1
K0

r
l

� ��
þ a

a þ b
r
l

�
þ 2 l

r

�
K1

r
l

� ��� r1
r3

l
: ð191Þ

The expression for mouthr is as given by Eq. (191), except that the coefficient a=ða þ bÞ multiplying the r=l
term is replaced by b=ða þ bÞ. Thus, a discontinuity of the couple stress mouthr across the interface is

mouthr ðR; hÞ � minhrðR; hÞ ¼
4

cl
ðb � aÞ l � l̂l

l þ l̂l
r1
r3

l
: ð192Þ

8.2. Shear stress magnification factors

The shear stress components at the interface are obtained from Eqs. (187) and (188) by using r ¼ R. This
gives

tinr3 ¼ ð1� bÞ 2l̂l
l þ l̂l

r1
r3 ; toutr3 ¼ 1

l þ l̂l
2l̂l
h

þ bðl � l̂lÞ
i
r1
r3 ; ð193Þ

tinh3 ¼ ð1� bÞ 2l̂l
l þ l̂l

r1
h3; touth3 ¼ 1

l þ l̂l
2l
h

� bðl � l̂lÞ
i
r1

h3: ð194Þ

The classical elasticity results follow from Eqs. (193) and (194) by setting b ¼ 0. Thus, the stress magni-
fication factors due to couple stress effects are

finr3 ¼ finh3 ¼ 1� b; foutr3 ¼ 1þ b
2

l � l̂l
l̂l

; fouth3 ¼ 1� b
2

l � l̂l
l

: ð195Þ

For the considered type of interface, there is no magnification of the shear stress if two materials have the

same shear modulus ðl ¼ l̂lÞ. Actually, in this case the specification of the vanishing couple stress mrh at the

interface yields a classical elasticity solution, regardless of the couple stress moduli a and b, since from Eqs.
(190) and (191) moutrr ¼ �mouthh ¼ 0 and moutrh ¼ mouthr ¼ 0 everywhere in the matrix. This is also the case for the
matrix with the vanishing couple stress moduli a and b, since then l ¼ 0 and thus b ¼ 0, regardless of the
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values of the inhomogeneity couple stress moduli âa and b̂b. Similar conclusions were reached by Weitsman
(1965) in his plane-strain analysis.

Since c is necessarily positive by Eq. (174), the parameter b is positive if l > l̂l. Thus, finr3 > 1 if l < l̂l, and
vice versa, i.e., the maximum stress in soft inhomogeneity is reduced, and in stiff inhomogeneity enhanced
by the incorporation of couple stress effects. Similar conclusions were obtained by Wang (1970) in the case

of spherical inhomogeneity, and Gupta (1976) for circular inclusion under conditions of plane strain. On

the other hand, foutr3 is always greater than one, and fouth3 is always less than one (unless l ¼ l̂l). For the rigid
inclusion ðl̂l ! 1Þ, and the void ðl̂l ! 0Þ we have, respectively,

b ¼ �
2 l

R
K0
K1
þ a

aþb
R
l

; b ¼
2 l

R
K0
K1
þ 4l

R þ a
aþb

R
l

; ð196Þ

confirming the results from earlier sections, and indicating that the couple stress effects increase the

maximum stress in the case of rigid inclusion, and decrease the maximum stress in the case of a void.

Finally, we observe that the solutions for the inclusion and inhomogeneity problems have a simple direct

relationship in the case when the interface is unable to support the couple stress mrh. The transition between

the two solutions is obtained by using the substitution

l � l̂l
l þ l̂l

r1
r3

l
¼ �
r3; ð197Þ

as can easily be verified by comparing Eqs. (97)–(100) with Eqs. (181)–(186).

9. Conclusion

We have presented in this paper the solutions for selected problems of anti-plane strain couple stress

elasticity, which can be conveniently treated in polar coordinates by using the well-known representations

of solutions for the Laplacian and Helmholtz partial differential equations. An eigenstrain inclusion
problem is solved for uniform and polynomial distribution of the stress-free transformation strain. It is

shown that the strain within a circular inclusion, with a prescribed uniform eigenstrain, can be either

uniform or non-uniform, depending on the type of boundary condition imposed at the interface between

the inclusion and surrounding matrix. The components of the Eshelby tensor are calculated in each case.

Their dependence on the material parameters is discussed. The amplification of the stress concentration

factors is then calculated for circular void, rigid inclusion, and inhomogeneity under remote shear stress. It

is found that the couple stresses decrease the shear stress concentration for softer, and increase for stiffer

inhomogeneities. The comparison is made with related results from axisymmetric and plane-strain prob-
lems. Particular attention is given to different types of interface conditions between the rigid inclusion or

inhomogeneity and the surrounding matrices, and their effects on the stress magnification. The shear stress

and couple stress discontinuities across the interface, and the relationship between the inhomogeneity and

its equivalent eigenstrain inclusion problem are also discussed.
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